cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A073869 a(n) = Sum_{i=0..n} A002251(i)/(n+1).

Original entry on oeis.org

0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 22, 23, 24, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 30, 31, 32, 32, 33, 33, 34, 35, 35, 36, 37, 37, 38, 38, 39, 40, 40, 41, 42
Offset: 0

Views

Author

Amarnath Murthy, Aug 16 2002

Keywords

Comments

Is this the same as A005206?
Same as A005206 for 10000 terms (of course that does not resolve the question). - T. D. Noe, Mar 10 2011
See my 2023 publication on Hofstadter's G-sequence for a proof of the equality of (a(n)) with A005206. - Michel Dekking, Apr 27 2024

Crossrefs

Extensions

More terms from R. J. Mathar, Apr 28 2007
Edited by N. J. A. Sloane, Oct 05 2008 at the suggestion of R. J. Mathar

A293688 Partial sums of A002251.

Original entry on oeis.org

0, 2, 3, 8, 15, 18, 28, 32, 45, 60, 66, 84, 104, 112, 135, 144, 170, 198, 209, 240, 252, 286, 322, 336, 375, 416, 432, 476, 493, 540, 589, 608, 660, 714, 735, 792, 814, 874, 936, 960, 1025, 1050, 1118, 1188, 1215, 1288, 1363, 1392, 1470, 1500, 1581, 1664, 1696, 1782, 1815
Offset: 0

Views

Author

Enrique Navarrete, Oct 14 2017

Keywords

Crossrefs

Programs

  • Mathematica
    With[{n = 34}, Accumulate@ Prepend[Take[Values@ #, LengthWhile[#, # == 1 &] &@ Differences@ Keys@ #], 0] &@ Sort@ Flatten@ Map[{#1 -> #2, #2 -> #1} & @@ # &, Transpose@ {Array[Floor[# GoldenRatio] &, n], Array[Floor[# GoldenRatio^2] &, n]}]] (* Michael De Vlieger, Nov 14 2017 *)

Formula

a(n) = (n+1)*A005206(n) where A005206 is the Hofstadter G-sequence. [Apparently this is a conjecture, rather than a theorem. - N. J. A. Sloane, Mar 03 2019]
a(n) = Sum_{k=0..n} A002251(k). - Michel Marcus, Nov 13 2017

Extensions

Offset changed to 0 by Michel Marcus, Nov 13 2017

A026245 a(n) = (1/2)*(s(n) + 1), where s(n) is the n-th odd number in A002251.

Original entry on oeis.org

1, 3, 4, 2, 7, 8, 12, 5, 6, 16, 20, 21, 9, 24, 25, 10, 11, 29, 33, 13, 14, 37, 38, 15, 41, 42, 17, 45, 46, 18, 19, 50, 54, 55, 22, 58, 59, 23, 62, 63, 67, 26, 27, 71, 72, 28, 75, 76, 30, 79, 80, 31, 32, 84, 88, 34, 35, 92, 93, 36, 96, 97, 101
Offset: 1

Views

Author

Keywords

A026247 a(n) = (1/2)*s(n), where s(n) is n-th even number in A002251.

Original entry on oeis.org

1, 5, 2, 3, 9, 10, 4, 13, 14, 6, 17, 18, 7, 8, 22, 26, 27, 11, 30, 31, 12, 34, 35, 39, 15, 16, 43, 47, 48, 19, 51, 52, 20, 21, 56, 60, 23, 24, 64, 65, 25, 68, 69, 73, 28, 29, 77, 81, 82, 32, 85, 86, 33, 89, 90, 94, 36, 37, 98, 99, 38, 102, 103
Offset: 1

Views

Author

Keywords

A000201 Lower Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi), where phi = (1+sqrt(5))/2 = A001622.

Original entry on oeis.org

1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29, 30, 32, 33, 35, 37, 38, 40, 42, 43, 45, 46, 48, 50, 51, 53, 55, 56, 58, 59, 61, 63, 64, 66, 67, 69, 71, 72, 74, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 93, 95, 97, 98, 100, 101, 103, 105, 106, 108, 110
Offset: 1

Views

Author

Keywords

Comments

This is the unique sequence a satisfying a'(n)=a(a(n))+1 for all n in the set N of natural numbers, where a' denotes the ordered complement (in N) of a. - Clark Kimberling, Feb 17 2003
This sequence and A001950 may be defined as follows. Consider the maps a -> ab, b -> a, starting from a(1) = a; then A000201 gives the indices of a, A001950 gives the indices of b. The sequence of letters in the infinite word begins a, b, a, a, b, a, b, a, a, b, a, ... Setting a = 0, b = 1 gives A003849 (offset 0); setting a = 1, b = 0 gives A005614 (offset 0). - Philippe Deléham, Feb 20 2004
These are the numbers whose lazy Fibonacci representation (see A095791) includes 1; the complementary sequence (the upper Wythoff sequence, A001950) are the numbers whose lazy Fibonacci representation includes 2 but not 1.
a(n) is the unique monotonic sequence satisfying a(1)=1 and the condition "if n is in the sequence then n+(rank of n) is not in the sequence" (e.g. a(4)=6 so 6+4=10 and 10 is not in the sequence) - Benoit Cloitre, Mar 31 2006
Write A for A000201 and B for A001950 (the upper Wythoff sequence, complement of A). Then the composite sequences AA, AB, BA, BB, AAA, AAB,...,BBB,... appear in many complementary equations having solution A000201 (or equivalently, A001950). Typical complementary equations: AB=A+B (=A003623), BB=A+2B (=A101864), BBB=3A+5B (=A134864). - Clark Kimberling, Nov 14 2007
Cumulative sum of A001468 terms. - Eric Angelini, Aug 19 2008
The lower Wythoff sequence also can be constructed by playing the so-called Mancala-game: n piles of total d(n) chips are standing in a row. The piles are numbered from left to right by 1, 2, 3, ... . The number of chips in a pile at the beginning of the game is equal to the number of the pile. One step of the game is described as follows: Distribute the pile on the very left one by one to the piles right of it. If chips are remaining, build piles out of one chip subsequently to the right. After f(n) steps the game ends in a constant row of piles. The lower Wythoff sequence is also given by n -> f(n). - Roland Schroeder (florola(AT)gmx.de), Jun 19 2010
With the exception of the first term, a(n) gives the number of iterations required to reverse the list {1,2,3,...,n} when using the mapping defined as follows: remove the first term of the list, z(1), and add 1 to each of the next z(1) terms (appending 1's if necessary) to get a new list. See A183110 where this mapping is used and other references given. This appears to be essentially the Mancala-type game interpretation given by R. Schroeder above. - John W. Layman, Feb 03 2011
Also row numbers of A213676 starting with an even number of zeros. - Reinhard Zumkeller, Mar 10 2013
From Jianing Song, Aug 18 2022: (Start)
Numbers k such that {k*phi} > phi^(-2), where {} denotes the fractional part.
Proof: Write m = floor(k*phi).
If {k*phi} > phi^(-2), take s = m-k+1. From m < k*phi < m+1 we have k < (m-k+1)*phi < k + phi, so floor(s*phi) = k or k+1. If floor(s*phi) = k+1, then (see A003622) floor((k+1)*phi) = floor(floor(s*phi)*phi) = floor(s*phi^2)-1 = s+floor(s*phi)-1 = m+1, but actually we have (k+1)*phi > m+phi+phi^(-2) = m+2, a contradiction. Hence floor(s*phi) = k.
If floor(s*phi) = k, suppose otherwise that k*phi - m <= phi^(-2), then m < (k+1)*phi <= m+2, so floor((k+1)*phi) = m+1. Suppose that A035513(p,q) = k for p,q >= 1, then A035513(p,q+1) = floor((k+1)*phi) - 1 = m = A035513(s,1). But it is impossible for one number (m) to occur twice in A035513. (End)
The formula from Jianing Song above is a direct consequence of an old result by Carlitz et al. (1972). Their Theorem 11 states that (a(n)) consists of the numbers k such that {k*phi^(-2)} < phi^(-1). One has {k*phi^(-2)} = {k*(2-phi)} = {-k*phi}. Using that 1-phi^(-1) = phi^(-2), the Jianing Song formula follows. - Michel Dekking, Oct 14 2023
In the Fokkink-Joshi paper, this sequence is the Cloitre (1,1,2,1)-hiccup sequence, i.e., a(1) = 1; for m < n, a(n) = a(n-1)+2 if a(m) = n-1, else a(n) = a(n-1)+1. - Michael De Vlieger, Jul 28 2025

Examples

			From Roland Schroeder (florola(AT)gmx.de), Jul 13 2010: (Start)
Example for n = 5; a(5) = 8;
(Start: [1,2,3,4,5]; 8 steps until [5,4,3,2,1]):
[1,2,3,4,5]; [3,3,4,5]; [4,5,6]; [6,7,1,1]; [8,2,2,1,1,1]: [3,3,2,2,2,1,1,1]; [4,3,3,2,1,1,1]; [4,4,3,2,1,1]; [5,4,3,2,1]. (End)
		

References

  • Eric Friedman, Scott M. Garrabrant, Ilona K. Phipps-Morgan, A. S. Landsberg and Urban Larsson, Geometric analysis of a generalized Wythoff game, in Games of no Chance 5, MSRI publ. Cambridge University Press, date?
  • M. Gardner, Penrose Tiles to Trapdoor Ciphers, W. H. Freeman, 1989; see p. 107.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. M. Yaglom, Two games with matchsticks, pp. 1-7 of Qvant Selecta: Combinatorics I, Amer Math. Soc., 2001.

Crossrefs

a(n) = least k such that s(k) = n, where s = A026242. Complement of A001950. See also A058066.
The permutation A002251 maps between this sequence and A001950, in that A002251(a(n)) = A001950(n), A002251(A001950(n)) = a(n).
First differences give A014675. a(n) = A022342(n) + 1 = A005206(n) + n + 1. a(2n)-a(n)=A007067(n). a(a(a(n)))-a(n) = A026274(n-1). - Benoit Cloitre, Mar 08 2003
A185615 gives values n such that n divides A000201(n)^m for some integer m>0.
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021
Bisections: A276854, A342279.

Programs

  • Haskell
    a000201 n = a000201_list !! (n-1)
    a000201_list = f [1..] [1..] where
       f (x:xs) (y:ys) = y : f xs (delete (x + y) ys)
    -- Reinhard Zumkeller, Jul 02 2015, Mar 10 2013
    
  • Maple
    Digits := 100; t := evalf((1+sqrt(5))/2); A000201 := n->floor(t*n);
  • Mathematica
    Table[Floor[N[n*(1+Sqrt[5])/2]], {n, 1, 75}]
    Array[ Floor[ #*GoldenRatio] &, 68] (* Robert G. Wilson v, Apr 17 2010 *)
  • Maxima
    makelist(floor(n*(1+sqrt(5))/2),n,1,60); /* Martin Ettl, Oct 17 2012 */
    
  • PARI
    a(n)=floor(n*(sqrt(5)+1)/2)
    
  • PARI
    a(n)=(n+sqrtint(5*n^2))\2 \\ Charles R Greathouse IV, Feb 07 2013
    
  • Python
    def aupton(terms):
      alst, aset = [None, 1], {1}
      for n in range(1, terms):
        an = alst[n] + (1 if n not in aset else 2)
        alst.append(an); aset.add(an)
      return alst[1:]
    print(aupton(68)) # Michael S. Branicky, May 14 2021
    
  • Python
    from math import isqrt
    def A000201(n): return (n+isqrt(5*n**2))//2 # Chai Wah Wu, Jan 11 2022

Formula

Zeckendorf expansion of n (cf. A035517) ends with an even number of 0's.
Other properties: a(1)=1; for n>1, a(n) is taken to be the smallest integer greater than a(n-1) which is consistent with the condition "n is in the sequence if and only if a(n)+1 is not in the sequence".
a(1) = 1; for n>0, a(n+1) = a(n)+1 if n is not in the sequence, a(n+1) = a(n)+2 if n is in the sequence.
a(a(n)) = floor(n*phi^2) - 1 = A003622(n).
{a(k)} union {a(k)+1} = {1, 2, 3, 4, ...}. Hence a(1) = 1; for n>1, a(a(n)) = a(a(n)-1)+2, a(a(n)+1) = a(a(n))+1. - Benoit Cloitre, Mar 08 2003
{a(n)} is a solution to the recurrence a(a(n)+n) = 2*a(n)+n, a(1)=1 (see Barbeau et al.).
a(n) = A001950(n) - n. - Philippe Deléham, May 02 2004
a(0) = 0; a(n) = n + Max_{k : a(k) < n}. - Vladeta Jovovic, Jun 11 2004
a(Fibonacci(r-1)+j) = Fibonacci(r)+a(j) for 0 < j <= Fibonacci(r-2); 2 < r. - Paul Weisenhorn, Aug 18 2012
With 1 < k and A001950(k-1) < n <= A001950(k): a(n) = 2*n-k; A001950(n) = 3*n-k. - Paul Weisenhorn, Aug 21 2012

A001950 Upper Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi^2), where phi = (1+sqrt(5))/2.

Original entry on oeis.org

2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, 41, 44, 47, 49, 52, 54, 57, 60, 62, 65, 68, 70, 73, 75, 78, 81, 83, 86, 89, 91, 94, 96, 99, 102, 104, 107, 109, 112, 115, 117, 120, 123, 125, 128, 130, 133, 136, 138, 141, 143, 146, 149, 151, 154, 157
Offset: 1

Views

Author

Keywords

Comments

Indices at which blocks (1;0) occur in infinite Fibonacci word; i.e., n such that A005614(n-2) = 0 and A005614(n-1) = 1. - Benoit Cloitre, Nov 15 2003
A000201 and this sequence may be defined as follows: Consider the maps a -> ab, b -> a, starting from a(1) = a; then A000201 gives the indices of a, A001950 gives the indices of b. The sequence of letters in the infinite word begins a, b, a, a, b, a, b, a, a, b, a, ... Setting a = 0, b = 1 gives A003849 (offset 0); setting a = 1, b = 0 gives A005614 (offset 0). - Philippe Deléham, Feb 20 2004
a(n) = n-th integer which is not equal to the floor of any multiple of phi, where phi = (1+sqrt(5))/2 = golden number. - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), May 09 2007
Write A for A000201 and B for the present sequence (the upper Wythoff sequence, complement of A). Then the composite sequences AA, AB, BA, BB, AAA, AAB, ..., BBB, ... appear in many complementary equations having solution A000201 (or equivalently, the present sequence). Typical complementary equations: AB=A+B (=A003623), BB=A+2B (=A101864), BBB=3A+5B (=A134864). - Clark Kimberling, Nov 14 2007
Apart from the initial 0 in A090909, is this the same as that sequence? - Alec Mihailovs (alec(AT)mihailovs.com), Jul 23 2007
If we define a base-phi integer as a positive number whose representation in the golden ratio base consists only of nonnegative powers of phi, and if these base-phi integers are ordered in increasing order (beginning 1, phi, ...), then it appears that the difference between the n-th and (n-1)-th base-phi integer is phi-1 if and only if n belongs to this sequence, and the difference is 1 otherwise. Further, if each base-phi integer is written in linear form as a + b*phi (for example, phi^2 is written as 1 + phi), then it appears that there are exactly two base-phi integers with b=n if and only if n belongs to this sequence, and exactly three base-phi integers with b=n otherwise. - Geoffrey Caveney, Apr 17 2014
Numbers with an odd number of trailing zeros in their Zeckendorf representation (A014417). - Amiram Eldar, Feb 26 2021
Numbers missing from A066096. - Philippe Deléham, Jan 19 2023

Examples

			From _Paul Weisenhorn_, Aug 18 2012 and Aug 21 2012: (Start)
a(14) = floor(14*phi^2) = 36; a'(14) = floor(14*phi)=22;
with r=9 and j=1: a(13+1) = 34 + 2 = 36;
with r=8 and j=1: a'(13+1) = 21 + 1 = 22.
k=6 and a(5)=13 < n <= a(6)=15
a(14) = 3*14 - 6 = 36; a'(14) = 2*14 - 6 = 22;
a(15) = 3*15 - 6 = 39; a'(15) = 2*15 - 6 = 24. (End)
		

References

  • Claude Berge, Graphs and Hypergraphs, North-Holland, 1973; p. 324, Problem 2.
  • Eric Friedman, Scott M. Garrabrant, Ilona K. Phipps-Morgan, A. S. Landsberg and Urban Larsson, Geometric analysis of a generalized Wythoff game, in Games of no Chance 5, MSRI publ. Cambridge University Press, 2019.
  • Martin Gardner, Penrose Tiles to Trapdoor Ciphers, W. H. Freeman, 1989; see p. 107.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. M. Yaglom, Two games with matchsticks, pp. 1-7 of Qvant Selecta: Combinatorics I, Amer Math. Soc., 2001.

Crossrefs

a(n) = greatest k such that s(k) = n, where s = A026242.
Complement of A000201 or A066096.
A002251 maps between A000201 and A001950, in that A002251(A000201(n)) = A001950(n), A002251(A001950(n)) = A000201(n).
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864.
First differences give (essentially) A076662.
Bisections: A001962, A001966.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Haskell
    a001950 n = a000201 n + n  -- Reinhard Zumkeller, Mar 10 2013
    
  • Magma
    [Floor(n*((1+Sqrt(5))/2)^2): n in [1..80]]; // Vincenzo Librandi, Nov 19 2016
    
  • Maple
    A001950 := proc(n)
        floor(n*(3+sqrt(5))/2) ;
    end proc:
    seq(A001950(n),n=0..40) ; # R. J. Mathar, Jul 16 2024
  • Mathematica
    Table[Floor[N[n*(1+Sqrt[5])^2/4]], {n, 1, 75}]
    Array[ Floor[ #*GoldenRatio^2] &, 60] (* Robert G. Wilson v, Apr 17 2010 *)
  • PARI
    a(n)=floor(n*(sqrt(5)+3)/2)
    
  • PARI
    A001950(n)=(sqrtint(n^2*5)+n*3)\2 \\ M. F. Hasler, Sep 17 2014
    
  • Python
    from math import isqrt
    def A001950(n): return (n+isqrt(5*n**2)>>1)+n # Chai Wah Wu, Aug 10 2022

Formula

a(n) = n + floor(n*phi). In general, floor(n*phi^m) = Fibonacci(m-1)*n + floor(Fibonacci(m)*n*phi). - Benoit Cloitre, Mar 18 2003
a(n) = n + floor(n*phi) = n + A000201(n). - Paul Weisenhorn and Philippe Deléham
Append a 0 to the Zeckendorf expansion (cf. A035517) of n-th term of A000201.
a(n) = A003622(n) + 1. - Philippe Deléham, Apr 30 2004
a(n) = Min(m: A134409(m) = A006336(n)). - Reinhard Zumkeller, Oct 24 2007
If a'=A000201 is the ordered complement (in N) of {a(n)}, then a(Fib(r-2) + j) = Fib(r) + a(j) for 0 < j <= Fib(r-2), 3 < r; and a'(Fib(r-1) + j) = Fib(r) + a'(j) for 0 < j <= Fib(r-2), 2 < r. - Paul Weisenhorn, Aug 18 2012
With a(1)=2, a(2)=5, a'(1)=1, a'(2)=3 and 1 < k and a(k-1) < n <= a(k) one gets a(n)=3*n-k, a'(n)=2*n-k. - Paul Weisenhorn, Aug 21 2012

Extensions

Corrected by Michael Somos, Jun 07 2000

A090909 Terms a(k) of A073869 for which a(k-1) = a(k), and a(k) and a(k+1) are distinct.

Original entry on oeis.org

2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, 41, 44, 47, 49, 52, 54, 57, 60, 62, 65, 68, 70, 73, 75, 78, 81, 83, 86, 89, 91, 94, 96, 99, 102, 104, 107, 109, 112, 115, 117, 120, 123, 125, 128, 130, 133, 136, 138, 141, 143, 146, 149, 151, 154, 157, 159, 162
Offset: 1

Views

Author

Amarnath Murthy, Dec 14 2003

Keywords

Comments

Is this the same as A001950? - Alec Mihailovs (alec(AT)mihailovs.com), Jul 23 2007
Identical to n + A066096(n)? - Ed Russell (times145(AT)hotmail.com), May 09 2009
From Michel Dekking, Dec 18 2024: (Start)
Proof of Mihailovs's conjecture: This follows immediately from the result in my 2023 paper in JIS that A073869 is equal to Hofstadter’s G-sequence A005206, and my recent comment in A005206 on the pairs of duplicate values in A005206.
The answer to Russell’s question is well-known, and also Detlef’s formula is well-known.
Originally, this sequence was given the name “Terms a(k) of A073869 for which a(k-1), a(k) and a(k+1) are distinct.’’ These are the triples (1,2,3),(4,5,6),(6,7,8), (9,10,11), ... occurring at k = 3, k = 8, k = 11, k = 16,... in A005206. Note that if a duplicate pair (a(m-1), a(m)) is followed directly by another duplicate pair, then a(m-3), a(m-2) and a(m-1) are distinct, and only so. This corresponds to the block 00 occurring in the Fibonacci word obtained by projecting A005206 on the Fibonacci word (see Corollary in my recent comment in A005206). These occurrences are at the Wythoff AB numbers A003623 according to Wolfdieter Lang’s comment in A003623. Conclusion: the sequence of terms a(k) of A073869 for which a(k-1), a(k), and a(k+1) are distinct is given by the Wythoff AB-numbers. (End)

Examples

			A073869 = A005206 = 0,1,1,2,3,3,4,4,5,6,6,... The pair (1,1) occurs at k = 2.
		

Crossrefs

Programs

  • Magma
    [Floor((3+Sqrt(5))*n/2): n in [0..80]]; // G. C. Greubel, Sep 12 2023
    
  • Mathematica
    (* First program *)
    A002251= Fold[Append[#1, #2 Ceiling[#2/GoldenRatio] -Total[#1]] &, {1}, Range[2, 500]] - 1; (* Birkas Gyorgy's code of A019444, modified *)
    A090909= Join[{0}, Select[Partition[A002251, 2, 1], #[[2]] > #[[1]] &][[All, 2]]] (* G. C. Greubel, Sep 12 2023 *)
    (* Second program *)
    Floor[GoldenRatio^2*Range[0,80]] (* G. C. Greubel, Sep 12 2023 *)
  • SageMath
    [floor(golden_ratio^2*n) for n in range(81)] # G. C. Greubel, Sep 12 2023

Formula

a(n) = floor(phi^2*n), where phi = (1+sqrt(5))/2. - Gary Detlefs, Mar 10 2011

Extensions

More terms from R. J. Mathar, Sep 29 2017
Name corrected by Michel Dekking, Dec 13 2024

A019444 a_1, a_2, ..., is a permutation of the positive integers such that the average of each initial segment is an integer, using the greedy algorithm to define a_n.

Original entry on oeis.org

1, 3, 2, 6, 8, 4, 11, 5, 14, 16, 7, 19, 21, 9, 24, 10, 27, 29, 12, 32, 13, 35, 37, 15, 40, 42, 17, 45, 18, 48, 50, 20, 53, 55, 22, 58, 23, 61, 63, 25, 66, 26, 69, 71, 28, 74, 76, 30, 79, 31, 82, 84, 33, 87, 34, 90, 92, 36, 95, 97, 38, 100, 39, 103, 105, 41, 108, 110, 43, 113
Offset: 1

Views

Author

R. K. Guy and Tom Halverson (halverson(AT)macalester.edu)

Keywords

Comments

Self-inverse when considered as a permutation or function, i.e., a(a(n)) = n. - Howard A. Landman, Sep 25 2001
That each initial segment has an integer average is trivially equivalent to the sum of the first n elements always being divisible by n. - Franklin T. Adams-Watters, Jul 07 2014
Also, a lexicographically minimal sequence of distinct positive integers such that all values of a(n)-n are also distinct. - Ivan Neretin, Apr 18 2015
Comments from N. J. A. Sloane, Mar 29 2025 (Start):
Let d(n) = number of 1 <= i <= n such that a(i) < i. The d(i) sequence begins 0, 0, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, ..., and appears to be A060144 without its initial term.
Let r(n) = 1 if a(n) < a(n+1), otherwise 0, and let f(n) = 1 if a(n) > a(n+1), otherwise 0. Then R = partial sums of r(n) and F = partial sums of f(n) count the rises and falls, respectively, in the present sequence. It appears that R and F are essentially A060143 and A060144 (again).
If a(n) is the k-th term in a monotonically strictly increasing rum of terms, set R(n) = k. It appears that the sequence R(n), n>=1, is essentially A270788.
For other sequences derived from the present one, see A382162, A382168, and A382169.
(End)

References

  • Muharem Avdispahić and Faruk Zejnulahi, An integer sequence with a divisibility property, Fibonacci Quarterly, Vol. 58:4 (2020), 321-333.

Crossrefs

Programs

  • Mathematica
    a[1]=1; a[n_] := a[n]=Module[{s, v}, s=a/@Range[n-1]; For[v=Mod[ -Plus@@s, n], v<1||MemberQ[s, v], v+=n, Null]; v]
    lst = {1}; f[s_List] := Block[{k = 1, len = 1 + Length@ lst, t = Plus @@ lst}, While[ MemberQ[s, k] || Mod[k + t, len] != 0, k++ ]; AppendTo[lst, k]]; Nest[f, lst, 69] (* Robert G. Wilson v, May 17 2010 *)
    Fold[Append[#1, #2 Ceiling[#2/GoldenRatio] - Total[#1]] &, {1}, Range[2, 70]] (* Birkas Gyorgy, May 25 2012 *)
  • PARI
    al(n)=local(v,s,fnd);v=vector(n);v[1]=s=1;for(k=2,n,fnd=0;for(i=1,k-1,if(v[i]==s,fnd=1;break));v[k]=if(fnd,s+k,s);s+=fnd);v \\ Franklin T. Adams-Watters, May 20 2010
    
  • PARI
    A019444_upto(N, c=0, A=Vec(1, N))={for(n=2, N, A[n]||(#AM. F. Hasler, Nov 27 2019

Formula

a(n) = A002251(n-1) + 1. (Corrected by M. F. Hasler, Sep 17 2014)
Let s(n) = (1/n)*Sum_{k=1..n} a(k) = A019446(n). Then if s(n-1) does not occur in a(1),...,a(n-1), a(n) = s(n) = s(n-1); otherwise, a(n) = s(n-1) + n and s(n) = s(n-1) + 1. - Franklin T. Adams-Watters, May 20 2010
Lim_{n->infinity} max(n,a(n))/min(n,a(n)) = phi = A001622. - Stanislav Sykora, Jun 12 2017

A026242 a(n) = j if n is L(j), else a(n) = k if n is U(k), where L = A000201, U = A001950 (lower and upper Wythoff sequences).

Original entry on oeis.org

1, 1, 2, 3, 2, 4, 3, 5, 6, 4, 7, 8, 5, 9, 6, 10, 11, 7, 12, 8, 13, 14, 9, 15, 16, 10, 17, 11, 18, 19, 12, 20, 21, 13, 22, 14, 23, 24, 15, 25, 16, 26, 27, 17, 28, 29, 18, 30, 19, 31, 32, 20, 33, 21, 34, 35, 22, 36, 37, 23, 38, 24, 39, 40, 25, 41
Offset: 1

Views

Author

Keywords

Comments

Every positive integer occurs exactly twice. a(n) is the parent of n in the tree at A074049. - Clark Kimberling, Dec 24 2010
Apparently, if n=F(m) (a Fibonacci number), one of two circumstances arise:
I. a(n)=F(m-1) and a(n-1)=F(m-2). When this happens, a(n) occurs for the first time and a(n-1) occurs for the second time;
II. a(n)=F(m-2) and a(n-1)=F(m-1). When this happens, a(n) occurs for the second time and a(n-1) occurs for the first time. - Bob Selcoe, Sep 18 2014
These are the numerators when all fractions, j/r and k/r^2, are arranged in increasing order (where r = golden ratio and j,k are positive integers). - Clark Kimberling, Mar 02 2015

Crossrefs

Cf. A000045 (Fibonacci numbers).

Programs

  • Mathematica
    mx = 100; gr = GoldenRatio; LW[n_] := Floor[n*gr]; UW[n_] := Floor[n*gr^2]; alw = Array[LW, Ceiling[mx/gr]]; auw = Array[UW, Ceiling[mx/gr^2]]; f[n_] := If[ MemberQ[alw, n], Position[alw, n][[1, 1]], Position[auw, n][[1, 1]]]; Array[f, mx] (* Robert G. Wilson v, Sep 17 2014 *)
  • PARI
    my(A=vector(10^4),i,j=0); while(#A>=i=A000201(j++), A[i]=j; (i=A001950(j))>#A || A[i]=j); A026242=A \\ M. F. Hasler, Sep 16 2014 and Sep 18 2014
    
  • PARI
    A026242=vector(#A002251,n,abs(A002251[n]-n)) \\ M. F. Hasler, Sep 17 2014

Formula

a(n) = a(m) if a(m) has already occurred exactly once and n = a(m) + m; otherwise, a(n) = least positive integer that has not yet occurred.
a(n) = abs(A002251(n) - n).
n = a(n) + a(n-1) unless n = A089910(m); if n = A089910(m), then n = a(n) + a(n-1) - m. - Bob Selcoe, Sep 20 2014
There is a 17-state automaton that accepts the Zeckendorf (Fibonacci) representation of n and a(n), in parallel. See the file a026242.pdf. - Jeffrey Shallit, Dec 21 2023

A004481 Table of Sprague-Grundy values for Wythoff's game (Wyt Queens) read by antidiagonals.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 3, 0, 0, 3, 4, 4, 1, 4, 4, 5, 5, 5, 5, 5, 5, 6, 3, 3, 6, 3, 3, 6, 7, 7, 4, 2, 2, 4, 7, 7, 8, 8, 8, 0, 7, 0, 8, 8, 8, 9, 6, 6, 1, 6, 6, 1, 6, 6, 9, 10, 10, 7, 9, 9, 8, 9, 9, 7, 10, 10, 11, 11, 11, 10, 0, 10, 10, 0, 10, 11, 11, 11, 12, 9, 9, 12, 1, 1, 3, 1, 1, 12, 9, 9, 12
Offset: 0

Views

Author

Keywords

Comments

T(a,b) = T(b,a).

Examples

			Table begins
   0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, ...
   1,  2,  0,  4,  5,  3,  7,  8,  6, 10, 11,  9, ...
   2,  0,  1,  5,  3,  4,  8,  6,  7, 11,  9, ...
   3,  4,  5,  6,  2,  0,  1,  9, 10, 12, ...
   4,  5,  3,  2,  7,  6,  9,  0,  1, ...
   5,  3,  4,  0,  6,  8, 10,  1, ...
   6,  7,  8,  1,  9, 10,  3, ...
   7,  8,  6,  9,  0,  1, ...
   8,  6,  7, 10,  1, ...
   9, 10, 11, 12, ...
  10, 11,  9, ...
  11,  9, ...
  12, ...
  ...
		

References

  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 76.
  • Eric Friedman, Scott M. Garrabrant, Ilona K. Phipps-Morgan, A. S. Landsberg and Urban Larsson, Geometric analysis of a generalized Wythoff game, in Games of no Chance 5, MSRI publ. Cambridge University Press, date?
  • R. K. Guy, The unity of combinatorics, Proc. 25th Iranian Math. Conf, Tehran, (1994), Math. Appl 329 129-159, Kluwer Dordrecht 1995, Math. Rev. 96k:05001.

Crossrefs

A004482-A004487 are rows 1 to 6. Cf. A047708 (main diagonal).
See A317205 for triangle of values on or below main diagonal.
Similar to but different from A004489.
T(a, b)=0 iff A018219(a, b)=0 iff A002251(a)=b.

Programs

  • Mathematica
    mex[list_] := mex[list] = Min[Complement[Range[0, Length[list]], list]];
    move[Wnim, {a_, b_}] := move[Wnim, {a, b}] =
       Union[Table[{i, b}, {i, 0, a - 1}], Table[{a, i}, {i, 0, b - 1}],
        Table[{a - i, b - i}, {i, 1, Min[a, b]}]];
    SpragueGrundy[game_, list_] := SpragueGrundy[game, list] =
       mex[SpragueGrundy[game, #] & /@ move[game, list]];
    t[n_, m_] := SpragueGrundy[Wnim, {n - 1, m - 1}];
    Flatten@Table[t[n - m + 1, m], {n, 11}, {m, n}] (* Birkas Gyorgy, Apr 19 2011 *)
  • PARI
    See Links section.
Showing 1-10 of 22 results. Next