A073869
a(n) = Sum_{i=0..n} A002251(i)/(n+1).
Original entry on oeis.org
0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 22, 23, 24, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 30, 31, 32, 32, 33, 33, 34, 35, 35, 36, 37, 37, 38, 38, 39, 40, 40, 41, 42
Offset: 0
Original entry on oeis.org
0, 2, 3, 8, 15, 18, 28, 32, 45, 60, 66, 84, 104, 112, 135, 144, 170, 198, 209, 240, 252, 286, 322, 336, 375, 416, 432, 476, 493, 540, 589, 608, 660, 714, 735, 792, 814, 874, 936, 960, 1025, 1050, 1118, 1188, 1215, 1288, 1363, 1392, 1470, 1500, 1581, 1664, 1696, 1782, 1815
Offset: 0
-
With[{n = 34}, Accumulate@ Prepend[Take[Values@ #, LengthWhile[#, # == 1 &] &@ Differences@ Keys@ #], 0] &@ Sort@ Flatten@ Map[{#1 -> #2, #2 -> #1} & @@ # &, Transpose@ {Array[Floor[# GoldenRatio] &, n], Array[Floor[# GoldenRatio^2] &, n]}]] (* Michael De Vlieger, Nov 14 2017 *)
A026245
a(n) = (1/2)*(s(n) + 1), where s(n) is the n-th odd number in A002251.
Original entry on oeis.org
1, 3, 4, 2, 7, 8, 12, 5, 6, 16, 20, 21, 9, 24, 25, 10, 11, 29, 33, 13, 14, 37, 38, 15, 41, 42, 17, 45, 46, 18, 19, 50, 54, 55, 22, 58, 59, 23, 62, 63, 67, 26, 27, 71, 72, 28, 75, 76, 30, 79, 80, 31, 32, 84, 88, 34, 35, 92, 93, 36, 96, 97, 101
Offset: 1
A026247
a(n) = (1/2)*s(n), where s(n) is n-th even number in A002251.
Original entry on oeis.org
1, 5, 2, 3, 9, 10, 4, 13, 14, 6, 17, 18, 7, 8, 22, 26, 27, 11, 30, 31, 12, 34, 35, 39, 15, 16, 43, 47, 48, 19, 51, 52, 20, 21, 56, 60, 23, 24, 64, 65, 25, 68, 69, 73, 28, 29, 77, 81, 82, 32, 85, 86, 33, 89, 90, 94, 36, 37, 98, 99, 38, 102, 103
Offset: 1
A000201
Lower Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi), where phi = (1+sqrt(5))/2 = A001622.
Original entry on oeis.org
1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29, 30, 32, 33, 35, 37, 38, 40, 42, 43, 45, 46, 48, 50, 51, 53, 55, 56, 58, 59, 61, 63, 64, 66, 67, 69, 71, 72, 74, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 93, 95, 97, 98, 100, 101, 103, 105, 106, 108, 110
Offset: 1
From Roland Schroeder (florola(AT)gmx.de), Jul 13 2010: (Start)
Example for n = 5; a(5) = 8;
(Start: [1,2,3,4,5]; 8 steps until [5,4,3,2,1]):
[1,2,3,4,5]; [3,3,4,5]; [4,5,6]; [6,7,1,1]; [8,2,2,1,1,1]: [3,3,2,2,2,1,1,1]; [4,3,3,2,1,1,1]; [4,4,3,2,1,1]; [5,4,3,2,1]. (End)
- Eric Friedman, Scott M. Garrabrant, Ilona K. Phipps-Morgan, A. S. Landsberg and Urban Larsson, Geometric analysis of a generalized Wythoff game, in Games of no Chance 5, MSRI publ. Cambridge University Press, date?
- M. Gardner, Penrose Tiles to Trapdoor Ciphers, W. H. Freeman, 1989; see p. 107.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- I. M. Yaglom, Two games with matchsticks, pp. 1-7 of Qvant Selecta: Combinatorics I, Amer Math. Soc., 2001.
- N. J. A. Sloane, Table of n, a(n) for n = 1..10000
- J.-P. Allouche and F. M. Dekking, Generalized Beatty sequences and complementary triples, arXiv:1809.03424 [math.NT], 2018.
- J.-P. Allouche, J. Shallit, and G. Skordev, Self-generating sets, integers with missing blocks and substitutions, Discrete Math. 292 (2005) 1-15.
- Peter G. Anderson, The Fibonacci word as a 2-adic number and its continued fraction, Fibonacci Quarterly (2020) Vol. 58, No. 5, 21-24.
- Joerg Arndt, Matters Computational (The Fxtbook), pp.756-757.
- Shiri Artstein-Avidan, Aviezri S. Fraenkel, and Vera T. Sos, A two-parameter family of an extension of Beatty, Discr. Math. 308 (2008), 4578-4588.
- Shiri Artstein-avidan, Aviezri S. Fraenkel, and Vera T. Sos, A two-parameter family of an extension of Beatty sequences, Discrete Math., 308 (2008), 4578-4588.
- E. J. Barbeau, J. Chew, and S. Tanny, A matrix dynamics approach to Golomb's recursion, Electronic J. Combinatorics, #4.1 16 1997.
- Jon Asier Bárcena-Petisco, Luis Martínez, María Merino, Juan Manuel Montoya, and Antonio Vera-López, Fibonacci-like partitions and their associated piecewise-defined permutations, arXiv:2503.19696 [math.CO], 2025. See p. 3.
- M. Bunder and K. Tognetti, On the self matching properties of [j tau], Discrete Math., 241 (2001), 139-151.
- Lucas Bustos, Hung Viet Chu, Minchae Kim, Uihyeon Lee, Shreya Shankar, and Garrett Tresch, Integers Having F_{2k} in Both Zeckendorf and Chung-Graham Decompositions, arXiv:2504.20286 [math.NT], 2025. See p. 8.
- L. Carlitz, Richard Scoville, and V. E. Hoggatt, Jr., Fibonacci representations, Fib. Quart., Vol. 10, No. 1 (1972), pp. 1-28.
- L. Carlitz, R. Scoville, and T. Vaughan, Some arithmetic functions related to Fibonacci numbers, Fib. Quart., 11 (1973), 337-386.
- Benoit Cloitre, N. J. A. Sloane, and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
- Benoit Cloitre, N. J. A. Sloane, and M. J. Vandermast, Numerical analogues of Aronson's sequence, arXiv:math/0305308 [math.NT], 2003.
- Benoit Cloitre, A study of a family of self-referential sequences, arXiv:2506.18103 [math.GM], 2025. See p. 7.
- I. G. Connell, Some properties of Beatty sequences I, Canad. Math. Bull., 2 (1959), 190-197.
- J. H. Conway and N. J. A. Sloane, Notes on the Para-Fibonacci and related sequences.
- H. S. M. Coxeter, The Golden Section, Phyllotaxis and Wythoff's Game, Scripta Math. 19 (1953), 135-143. [Annotated scanned copy]
- F. Michel Dekking, Morphisms, Symbolic Sequences, and Their Standard Forms, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1.
- F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
- P. J. Downey and R. E. Griswold, On a family of nested recurrences, Fib. Quart., 22 (1984), 310-317.
- Eric Duchene, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, and Urban Larsson, Wythoff Wisdom, 43 pages, no date, unpublished.
- Eric Duchene, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, and Urban Larsson, Wythoff Wisdom, unpublished, no date [Cached copy, with permission]
- Larry Ericksen and Peter G. Anderson, Patterns in differences between rows in k-Zeckendorf arrays, The Fibonacci Quarterly, Vol. 50, No. 1 (February 2012), pp. 11-18.
- Robbert Fokkink and Gandhar Joshi, On Cloitre's hiccup sequences, arXiv:2507.16956 [math.CO], 2025. See pp. 8, 16-17.
- Nathan Fox, On Aperiodic Subtraction Games with Bounded Nim Sequence, arXiv preprint arXiv:1407.2823 [math.CO], 2014.
- A. S. Fraenkel, The bracket function and complementary sets of integers, Canadian J. of Math. 21 (1969) 6-27. [History, references, generalization]
- A. S. Fraenkel, How to beat your Wythoff games' opponent on three fronts, Amer. Math. Monthly, 89 (1982), 353-361 (the case a=1).
- A. S. Fraenkel, Ratwyt, December 28 2011.
- David Garth and Adam Gouge, Affinely Self-Generating Sets and Morphisms, Journal of Integer Sequences, Article 07.1.5, 10 (2007) 1-13.
- M. Griffiths, The Golden String, Zeckendorf Representations, and the Sum of a Series, Amer. Math. Monthly, 118 (2011), 497-507.
- Martin Griffiths, On a Matrix Arising from a Family of Iterated Self-Compositions, Journal of Integer Sequences, 18 (2015), #15.11.8.
- Martin Griffiths, A difference property amongst certain pairs of Beatty sequences, The Mathematical Gazette (2018) Vol. 102, Issue 554, Article 102.36, 348-350.
- H. Grossman, A set containing all integers, Amer. Math. Monthly, 69 (1962), 532-533.
- A. J. Hildebrand, Junxian Li, Xiaomin Li, and Yun Xie, Almost Beatty Partitions, arXiv:1809.08690 [math.NT], 2018.
- T. Karki, A. Lacroix, and M. Rigo, On the recognizability of self-generating sets, JIS 13 (2010) #10.2.2.
- Clark Kimberling, A Self-Generating Set and the Golden Mean, J. Integer Sequences, 3 (2000), #00.2.8.
- Clark Kimberling, Matrix Transformations of Integer Sequences, J. Integer Seqs., Vol. 6, 2003.
- Clark Kimberling, Complementary equations and Wythoff Sequences, Journal of Integer Sequences, 11 (2008) 08.3.3.
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
- Clark Kimberling, Problem Proposals, The Fibonacci Quarterly, vol. 52 #5, 2015, p5-14.
- Clark Kimberling, Lucas Representations of Positive Integers, J. Int. Seq., Vol. 23 (2020), Article 20.9.5.
- Clark Kimberling, Intriguing infinite words composed of zeros and ones, Elemente der Mathematik (2021).
- C. Kimberling and K. B. Stolarsky, Slow Beatty sequences, devious convergence, and partitional divergence, Amer. Math. Monthly, 123 (No. 2, 2016), 267-273.
- Wolfdieter Lang, The Wythoff and the Zeckendorf representations of numbers are equivalent, in G. E. Bergum et al. (edts.) Application of Fibonacci numbers vol. 6, Kluwer, Dordrecht, 1996, pp. 319-337.[See A317208 for a link.]
- U. Larsson and N. Fox, An Aperiodic Subtraction Game of Nim-Dimension Two, Journal of Integer Sequences, 2015, Vol. 18, #15.7.4.
- A. J. Macfarlane, On the fibbinary numbers and the Wythoffarray, arXiv:2405.18128 [math.CO], 2024. See page 2.
- R. J. Mathar, Graphical representation among sequences closely related to this one (cf. N. J. A. Sloane, "Families of Essentially Identical Sequences").
- D. J. Newman, Problem 3117, Amer. Math. Monthly, 34 (1927), 158-159.
- D. J. Newman, Problem 5252, Amer. Math. Monthly, 72 (1965), 1144-1145.
- Gabriel Nivasch, More on the Sprague-Grundy function for Wythoff's game, pages 377-410 in "Games of No Chance 3", MSRI Publications Volume 56, 2009.
- R. J. Nowakowski, Generalizations of the Langford-Skolem problem, M.S. Thesis, Dept. Math., Univ. Calgary, May 1975. [Scanned copy, with permission.]
- Michel Rigo, Invariant games and non-homogeneous Beatty sequences, Slides of a talk, Journée de Mathématiques Discrètes, 2015.
- Vincent Russo and Loren Schwiebert, Beatty Sequences, Fibonacci Numbers, and the Golden Ratio, The Fibonacci Quarterly, Vol 49, Number 2, May 2011.
- Luke Schaeffer, Jeffrey Shallit, and Stefan Zorcic, Beatty Sequences for a Quadratic Irrational: Decidability and Applications, arXiv:2402.08331 [math.NT], 2024.
- Jeffrey Shallit, Sumsets of Wythoff Sequences, Fibonacci Representation, and Beyond, arXiv:2006.04177 [math.CO], 2020.
- Jeffrey Shallit, Frobenius Numbers and Automatic Sequences, arXiv:2103.10904 [math.NT], 2021.
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- N. J. A. Sloane, Classic Sequences
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
- K. B. Stolarsky, Beatty sequences, continued fractions, and certain shift operators, Canadian Math. Bull. 19 (1976) pp. 473-482.
- Richard Southwell and Jianwei Huang, Complex Networks from Simple Rewrite Systems, arXiv preprint arXiv:1205.0596 [cs.SI], 2012. - _N. J. A. Sloane_, Oct 13 2012
- X. Sun, Wythoff's sequence and N-Heap Wythoff's conjectures, Discr. Math., 300 (2005), 180-195.
- J. C. Turner, The alpha and the omega of the Wythoff pairs, Fib. Q., 27 (1989), 76-86.
- Eric Weisstein's World of Mathematics, Beatty Sequence
- Eric Weisstein's World of Mathematics, Golden Ratio
- Eric Weisstein's World of Mathematics, Rabbit Constant
- Eric Weisstein's World of Mathematics, Wythoff's Game
- Eric Weisstein's World of Mathematics, Wythoff Array
- Index entries for sequences related to Beatty sequences
- Index entries for sequences of the a(a(n)) = 2n family
A185615 gives values n such that n divides
A000201(n)^m for some integer m>0.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with
A000201 as the parent:
A000201,
A001030,
A001468,
A001950,
A003622,
A003842,
A003849,
A004641,
A005614,
A014675,
A022342,
A088462,
A096270,
A114986,
A124841. -
N. J. A. Sloane, Mar 11 2021
-
a000201 n = a000201_list !! (n-1)
a000201_list = f [1..] [1..] where
f (x:xs) (y:ys) = y : f xs (delete (x + y) ys)
-- Reinhard Zumkeller, Jul 02 2015, Mar 10 2013
-
Digits := 100; t := evalf((1+sqrt(5))/2); A000201 := n->floor(t*n);
-
Table[Floor[N[n*(1+Sqrt[5])/2]], {n, 1, 75}]
Array[ Floor[ #*GoldenRatio] &, 68] (* Robert G. Wilson v, Apr 17 2010 *)
-
makelist(floor(n*(1+sqrt(5))/2),n,1,60); /* Martin Ettl, Oct 17 2012 */
-
a(n)=floor(n*(sqrt(5)+1)/2)
-
a(n)=(n+sqrtint(5*n^2))\2 \\ Charles R Greathouse IV, Feb 07 2013
-
def aupton(terms):
alst, aset = [None, 1], {1}
for n in range(1, terms):
an = alst[n] + (1 if n not in aset else 2)
alst.append(an); aset.add(an)
return alst[1:]
print(aupton(68)) # Michael S. Branicky, May 14 2021
-
from math import isqrt
def A000201(n): return (n+isqrt(5*n**2))//2 # Chai Wah Wu, Jan 11 2022
A001950
Upper Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi^2), where phi = (1+sqrt(5))/2.
Original entry on oeis.org
2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, 41, 44, 47, 49, 52, 54, 57, 60, 62, 65, 68, 70, 73, 75, 78, 81, 83, 86, 89, 91, 94, 96, 99, 102, 104, 107, 109, 112, 115, 117, 120, 123, 125, 128, 130, 133, 136, 138, 141, 143, 146, 149, 151, 154, 157
Offset: 1
From _Paul Weisenhorn_, Aug 18 2012 and Aug 21 2012: (Start)
a(14) = floor(14*phi^2) = 36; a'(14) = floor(14*phi)=22;
with r=9 and j=1: a(13+1) = 34 + 2 = 36;
with r=8 and j=1: a'(13+1) = 21 + 1 = 22.
k=6 and a(5)=13 < n <= a(6)=15
a(14) = 3*14 - 6 = 36; a'(14) = 2*14 - 6 = 22;
a(15) = 3*15 - 6 = 39; a'(15) = 2*15 - 6 = 24. (End)
- Claude Berge, Graphs and Hypergraphs, North-Holland, 1973; p. 324, Problem 2.
- Eric Friedman, Scott M. Garrabrant, Ilona K. Phipps-Morgan, A. S. Landsberg and Urban Larsson, Geometric analysis of a generalized Wythoff game, in Games of no Chance 5, MSRI publ. Cambridge University Press, 2019.
- Martin Gardner, Penrose Tiles to Trapdoor Ciphers, W. H. Freeman, 1989; see p. 107.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- I. M. Yaglom, Two games with matchsticks, pp. 1-7 of Qvant Selecta: Combinatorics I, Amer Math. Soc., 2001.
- N. J. A. Sloane, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Jean-Paul Allouche and F. Michel Dekking, Generalized Beatty sequences and complementary triples, Moscow Journal of Combinatorics and Number Theory, Vol. 8, No. 4 (2019), pp. 325-341; arXiv preprint, arXiv:1809.03424 [math.NT], 2018-2019.
- Jon Asier Bárcena-Petisco, Luis Martínez, María Merino, Juan Manuel Montoya, and Antonio Vera-López, Fibonacci-like partitions and their associated piecewise-defined permutations, arXiv:2503.19696 [math.CO], 2025. See p. 3.
- L. Carlitz, R. Scoville, and T. Vaughan, Some arithmetic functions related to Fibonacci numbers, Fib. Quart., 11 (1973), 337-386.
- I. G. Connell, Some properties of Beatty sequences I, Canad. Math. Bull., 2 (1959), 190-197.
- H. S. M. Coxeter, The Golden Section, Phyllotaxis and Wythoff's Game, Scripta Math. 19 (1953), 135-143. [Annotated scanned copy]
- F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
- Eric Duchene, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, and Urban Larsson, Wythoff Wisdom, 43 pages, no date, unpublished.
- Eric Duchene, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, and Urban Larsson, Wythoff Wisdom, unpublished, no date [Cached copy, with permission]
- Robbert Fokkink, The Pell Tower and Ostronometry, arXiv:2309.01644 [math.CO], 2023.
- Nathan Fox, On Aperiodic Subtraction Games with Bounded Nim Sequence, arXiv preprint arXiv:1407.2823 [math.CO], 2014
- Aviezri S. Fraenkel, How to beat your Wythoff games' opponent on three fronts, Amer. Math. Monthly, Vol. 89 (1982), pp. 353-361 (the case a=1).
- Aviezri S. Fraenkel, The Raleigh game, INTEGERS: Electronic Journal of Combinatorial Number Theory 7.2 (2007): A13, 10 pages. See Table 1.
- Aviezri S. Fraenkel, Ratwyt, December 28 2011.
- Aviezri S. Fraenkel, Complementary iterated floor words and the Flora game, SIAM J. Discrete Math., Vol. 24, No. 2 (2010), pp. 570-588. - _N. J. A. Sloane_, May 06 2011
- Martin Griffiths, The Golden String, Zeckendorf Representations, and the Sum of a Series, Amer. Math. Monthly, Vol. 118 (2011), pp. 497-507.
- Martin Griffiths, On a Matrix Arising from a Family of Iterated Self-Compositions, Journal of Integer Sequences, Vol. 18 (2015), Article #15.11.8.
- Martin Griffiths, A difference property amongst certain pairs of Beatty sequences, The Mathematical Gazette, Vol. 102, Issue 554 (2018), Article 102.36, pp. 348-350.
- Tomi Kärki, Anne Lacroix, and Michel Rigo, On the recognizability of self-generating sets, JIS, Vol. 13 (2010), Article #10.2.2.
- Clark Kimberling, A Self-Generating Set and the Golden Mean, J. Integer Sequences, Vol. 3 (2000), Article #00.2.8.
- Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
- Clark Kimberling, Complementary equations and Wythoff Sequences, JIS, Vol. 11 (2008), Article 08.3.3.
- Clark Kimberling, Lucas Representations of Positive Integers, J. Int. Seq., Vol. 23 (2020), Article 20.9.5.
- Clark Kimberling, Intriguing infinite words composed of zeros and ones, Elemente der Mathematik (2021).
- Clark Kimberling and Kenneth B. Stolarsky, Slow Beatty sequences, devious convergence, and partitional divergence, Amer. Math. Monthly, Vol. 123, No. 2 (2016), pp. 267-273.
- Johan Kok, Integer sequences with conjectured relation with certain graph parameters of the family of linear Jaco graphs, arXiv:2507.16500 [math.CO], 2025. See pp. 5-6.
- Wolfdieter Lang, The Wythoff and the Zeckendorf representations of numbers are equivalent, in G. E. Bergum et al. (eds.), Application of Fibonacci numbers vol. 6, Kluwer, Dordrecht, 1996, pp. 319-337. [See A317208 for a link.]
- Urban Larsson and Nathan Fox, An Aperiodic Subtraction Game of Nim-Dimension Two, Journal of Integer Sequences, 2015, Vol. 18, #15.7.4.
- A. J. Macfarlane, On the fibbinary numbers and the Wythoffarray, arXiv:2405.18128 [math.CO], 2024. See page 2.
- D. J. Newman, Problem 5252, Amer. Math. Monthly, Vol. 72, No. 10 (1965), pp. 1144-1145.
- Gabriel Nivasch, More on the Sprague-Grundy function for Wythoff's game, pages 377-410 in "Games of No Chance 3", MSRI Publications Volume 56, 2009.
- R. J. Nowakowski, Generalizations of the Langford-Skolem problem, M.S. Thesis, Dept. Math., Univ. Calgary, May 1975. [Scanned copy, with permission.]
- Michel Rigo, Invariant games and non-homogeneous Beatty sequences, Slides of a talk, Journée de Mathématiques Discrètes, 2015.
- Vincent Russo and Loren Schwiebert, Beatty Sequences, Fibonacci Numbers, and the Golden Ratio, The Fibonacci Quarterly, Vol. 49, No. 2 (May 2011), pp. 151-154.
- Luke Schaeffer, Jeffrey Shallit, and Stefan Zorcic, Beatty Sequences for a Quadratic Irrational: Decidability and Applications, arXiv:2402.08331 [math.NT], 2024.
- Jeffrey Shallit, Sumsets of Wythoff Sequences, Fibonacci Representation, and Beyond, arXiv:2006.04177 [math.CO], 2020.
- Jeffrey Shallit, Frobenius Numbers and Automatic Sequences, arXiv:2103.10904 [math.NT], 2021.
- Jeffrey Shallit, The Hurt-Sada Array and Zeckendorf Representations, arXiv:2501.08823 [math.NT], 2025. See p. 6.
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
- K. B. Stolarsky, Beatty sequences, continued fractions, and certain shift operators, Canadian Math. Bull., Vol. 19 (1976), pp. 473-482.
- X. Sun, Wythoff's sequence and N-Heap Wythoff's conjectures, Discr. Math., Vol. 300 (2005), pp. 180-195.
- J. C. Turner, The alpha and the omega of the Wythoff pairs, Fib. Q., Vol. 27 (1989), pp. 76-86.
- Eric Weisstein's World of Mathematics, Beatty Sequence.
- Eric Weisstein's World of Mathematics, Golden ratio.
- Eric Weisstein's World of Mathematics, Wythoff's Game.
- Eric Weisstein's World of Mathematics, Wythoff Array.
- Index entries for sequences related to Beatty sequences
a(n) = greatest k such that s(k) = n, where s =
A026242.
First differences give (essentially)
A076662.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with
A000201 as the parent:
A000201,
A001030,
A001468,
A001950,
A003622,
A003842,
A003849,
A004641,
A005614,
A014675,
A022342,
A088462,
A096270,
A114986,
A124841. -
N. J. A. Sloane, Mar 11 2021
-
a001950 n = a000201 n + n -- Reinhard Zumkeller, Mar 10 2013
-
[Floor(n*((1+Sqrt(5))/2)^2): n in [1..80]]; // Vincenzo Librandi, Nov 19 2016
-
A001950 := proc(n)
floor(n*(3+sqrt(5))/2) ;
end proc:
seq(A001950(n),n=0..40) ; # R. J. Mathar, Jul 16 2024
-
Table[Floor[N[n*(1+Sqrt[5])^2/4]], {n, 1, 75}]
Array[ Floor[ #*GoldenRatio^2] &, 60] (* Robert G. Wilson v, Apr 17 2010 *)
-
a(n)=floor(n*(sqrt(5)+3)/2)
-
A001950(n)=(sqrtint(n^2*5)+n*3)\2 \\ M. F. Hasler, Sep 17 2014
-
from math import isqrt
def A001950(n): return (n+isqrt(5*n**2)>>1)+n # Chai Wah Wu, Aug 10 2022
A090909
Terms a(k) of A073869 for which a(k-1) = a(k), and a(k) and a(k+1) are distinct.
Original entry on oeis.org
2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, 41, 44, 47, 49, 52, 54, 57, 60, 62, 65, 68, 70, 73, 75, 78, 81, 83, 86, 89, 91, 94, 96, 99, 102, 104, 107, 109, 112, 115, 117, 120, 123, 125, 128, 130, 133, 136, 138, 141, 143, 146, 149, 151, 154, 157, 159, 162
Offset: 1
A073869 = A005206 = 0,1,1,2,3,3,4,4,5,6,6,... The pair (1,1) occurs at k = 2.
-
[Floor((3+Sqrt(5))*n/2): n in [0..80]]; // G. C. Greubel, Sep 12 2023
-
(* First program *)
A002251= Fold[Append[#1, #2 Ceiling[#2/GoldenRatio] -Total[#1]] &, {1}, Range[2, 500]] - 1; (* Birkas Gyorgy's code of A019444, modified *)
A090909= Join[{0}, Select[Partition[A002251, 2, 1], #[[2]] > #[[1]] &][[All, 2]]] (* G. C. Greubel, Sep 12 2023 *)
(* Second program *)
Floor[GoldenRatio^2*Range[0,80]] (* G. C. Greubel, Sep 12 2023 *)
-
[floor(golden_ratio^2*n) for n in range(81)] # G. C. Greubel, Sep 12 2023
A019444
a_1, a_2, ..., is a permutation of the positive integers such that the average of each initial segment is an integer, using the greedy algorithm to define a_n.
Original entry on oeis.org
1, 3, 2, 6, 8, 4, 11, 5, 14, 16, 7, 19, 21, 9, 24, 10, 27, 29, 12, 32, 13, 35, 37, 15, 40, 42, 17, 45, 18, 48, 50, 20, 53, 55, 22, 58, 23, 61, 63, 25, 66, 26, 69, 71, 28, 74, 76, 30, 79, 31, 82, 84, 33, 87, 34, 90, 92, 36, 95, 97, 38, 100, 39, 103, 105, 41, 108, 110, 43, 113
Offset: 1
R. K. Guy and Tom Halverson (halverson(AT)macalester.edu)
- Muharem Avdispahić and Faruk Zejnulahi, An integer sequence with a divisibility property, Fibonacci Quarterly, Vol. 58:4 (2020), 321-333.
- Franklin T. Adams-Watters, Table of n, a(n) for n = 1..10000
- Éric Angelini, Franklin Adams-Watters, Max Alekseyev, A. E. Povolotsky, N. J. A. Sloane, and R. G. Wilson v, a(n) divides the sum of the first a(n) terms of T, Various postings to the old Sequence Fans Mailing List, assembled by _N. J. A. Sloane_, Dec 24 2024
- Jon Asier Bárcena-Petisco, Luis Martínez, María Merino, Juan Manuel Montoya, and Antonio Vera-López, Fibonacci-like partitions and their associated piecewise-defined permutations, arXiv:2503.19696 [math.CO], 2025. See p. 18.
- Math Forum, Problem of the Week 818
- Jeffrey Shallit, Proving properties of some greedily-defined integer recurrences via automata theory, arXiv:2308.06544 [cs.DM], August 12 2023.
- A. Shapovalov, Problem M1517 (in Russian), Kvant 5 (1995), 20-21. English translation appeared in Quantum problem M185, Sept/October 1996 (beware, file is 75Mb).
- B. J. Venkatachala, A curious bijection on natural numbers, JIS 12 (2009) 09.8.1.
- Index entries for sequences that are permutations of the natural numbers
-
a[1]=1; a[n_] := a[n]=Module[{s, v}, s=a/@Range[n-1]; For[v=Mod[ -Plus@@s, n], v<1||MemberQ[s, v], v+=n, Null]; v]
lst = {1}; f[s_List] := Block[{k = 1, len = 1 + Length@ lst, t = Plus @@ lst}, While[ MemberQ[s, k] || Mod[k + t, len] != 0, k++ ]; AppendTo[lst, k]]; Nest[f, lst, 69] (* Robert G. Wilson v, May 17 2010 *)
Fold[Append[#1, #2 Ceiling[#2/GoldenRatio] - Total[#1]] &, {1}, Range[2, 70]] (* Birkas Gyorgy, May 25 2012 *)
-
al(n)=local(v,s,fnd);v=vector(n);v[1]=s=1;for(k=2,n,fnd=0;for(i=1,k-1,if(v[i]==s,fnd=1;break));v[k]=if(fnd,s+k,s);s+=fnd);v \\ Franklin T. Adams-Watters, May 20 2010
-
A019444_upto(N, c=0, A=Vec(1, N))={for(n=2, N, A[n]||(#AM. F. Hasler, Nov 27 2019
A026242
a(n) = j if n is L(j), else a(n) = k if n is U(k), where L = A000201, U = A001950 (lower and upper Wythoff sequences).
Original entry on oeis.org
1, 1, 2, 3, 2, 4, 3, 5, 6, 4, 7, 8, 5, 9, 6, 10, 11, 7, 12, 8, 13, 14, 9, 15, 16, 10, 17, 11, 18, 19, 12, 20, 21, 13, 22, 14, 23, 24, 15, 25, 16, 26, 27, 17, 28, 29, 18, 30, 19, 31, 32, 20, 33, 21, 34, 35, 22, 36, 37, 23, 38, 24, 39, 40, 25, 41
Offset: 1
-
mx = 100; gr = GoldenRatio; LW[n_] := Floor[n*gr]; UW[n_] := Floor[n*gr^2]; alw = Array[LW, Ceiling[mx/gr]]; auw = Array[UW, Ceiling[mx/gr^2]]; f[n_] := If[ MemberQ[alw, n], Position[alw, n][[1, 1]], Position[auw, n][[1, 1]]]; Array[f, mx] (* Robert G. Wilson v, Sep 17 2014 *)
-
my(A=vector(10^4),i,j=0); while(#A>=i=A000201(j++), A[i]=j; (i=A001950(j))>#A || A[i]=j); A026242=A \\ M. F. Hasler, Sep 16 2014 and Sep 18 2014
-
A026242=vector(#A002251,n,abs(A002251[n]-n)) \\ M. F. Hasler, Sep 17 2014
A004481
Table of Sprague-Grundy values for Wythoff's game (Wyt Queens) read by antidiagonals.
Original entry on oeis.org
0, 1, 1, 2, 2, 2, 3, 0, 0, 3, 4, 4, 1, 4, 4, 5, 5, 5, 5, 5, 5, 6, 3, 3, 6, 3, 3, 6, 7, 7, 4, 2, 2, 4, 7, 7, 8, 8, 8, 0, 7, 0, 8, 8, 8, 9, 6, 6, 1, 6, 6, 1, 6, 6, 9, 10, 10, 7, 9, 9, 8, 9, 9, 7, 10, 10, 11, 11, 11, 10, 0, 10, 10, 0, 10, 11, 11, 11, 12, 9, 9, 12, 1, 1, 3, 1, 1, 12, 9, 9, 12
Offset: 0
Table begins
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...
1, 2, 0, 4, 5, 3, 7, 8, 6, 10, 11, 9, ...
2, 0, 1, 5, 3, 4, 8, 6, 7, 11, 9, ...
3, 4, 5, 6, 2, 0, 1, 9, 10, 12, ...
4, 5, 3, 2, 7, 6, 9, 0, 1, ...
5, 3, 4, 0, 6, 8, 10, 1, ...
6, 7, 8, 1, 9, 10, 3, ...
7, 8, 6, 9, 0, 1, ...
8, 6, 7, 10, 1, ...
9, 10, 11, 12, ...
10, 11, 9, ...
11, 9, ...
12, ...
...
- E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 76.
- Eric Friedman, Scott M. Garrabrant, Ilona K. Phipps-Morgan, A. S. Landsberg and Urban Larsson, Geometric analysis of a generalized Wythoff game, in Games of no Chance 5, MSRI publ. Cambridge University Press, date?
- R. K. Guy, The unity of combinatorics, Proc. 25th Iranian Math. Conf, Tehran, (1994), Math. Appl 329 129-159, Kluwer Dordrecht 1995, Math. Rev. 96k:05001.
- Vincenzo Librandi, Table of n, a(n) for n = 0..5049
- Uri Blass and Aviezri S. Fraenkel, The Sprague-Grundy function for Wythoff's game, Theoretical Computer Science 75.3 (1990): 311-333. See Table 2.
- F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
- A. Dress, A. Flammenkamp and N. Pink, Additive periodicity of the Sprague-Grundy function of certain Nim games, Adv. Appl. Math., 22, p. 249-270 (1999).
- Gabriel Nivasch, More on the Sprague-Grundy function for Wythoff's game, pages 377-410 in "Games of No Chance 3", MSRI Publications Volume 56, 2009. See Table 1.
- Rémy Sigrist, Colored representation of T(x,y) for x = 0..999 and y = 0..999 (where the hue is function of T(x,y) and black pixels correspond to zeros)
- Rémy Sigrist, PARI program for A004481
See
A317205 for triangle of values on or below main diagonal.
Similar to but different from
A004489.
-
mex[list_] := mex[list] = Min[Complement[Range[0, Length[list]], list]];
move[Wnim, {a_, b_}] := move[Wnim, {a, b}] =
Union[Table[{i, b}, {i, 0, a - 1}], Table[{a, i}, {i, 0, b - 1}],
Table[{a - i, b - i}, {i, 1, Min[a, b]}]];
SpragueGrundy[game_, list_] := SpragueGrundy[game, list] =
mex[SpragueGrundy[game, #] & /@ move[game, list]];
t[n_, m_] := SpragueGrundy[Wnim, {n - 1, m - 1}];
Flatten@Table[t[n - m + 1, m], {n, 11}, {m, n}] (* Birkas Gyorgy, Apr 19 2011 *)
-
See Links section.
Showing 1-10 of 22 results.
Comments