cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A220261 Decimal expansion of (1/e) * log_10(e), where 1/e = A068985, log_10(e) = A002285.

Original entry on oeis.org

1, 5, 9, 7, 6, 8, 0, 1, 1, 3, 0, 6, 4, 0, 9, 3, 5, 2, 6, 7, 2, 1, 4, 4, 3, 2, 7, 7, 1, 3, 3, 1, 9, 3, 9, 0, 8, 5, 8, 7, 2, 4, 0, 5, 1, 6, 1, 5, 3, 4, 5, 1, 8, 8, 1, 4, 0, 9, 0, 9, 2, 6, 3, 8, 0, 7, 5, 6, 6, 6, 4, 7, 1, 6, 1, 0, 1, 1, 2, 0, 7, 9, 4, 9, 5, 8
Offset: 0

Views

Author

Jaroslav Krizek, Dec 08 2012

Keywords

Comments

Maximal value of function x * log_10(x) for x < 0 in x = -1/e.
-0,159768… = minimal value of function x * log_10(x) for x > 0 in x = 1/e.
Decimal expansion of 1 / (e * log(10)), where e = A001113, log(10) = A002392.

Examples

			0.15976801130640935267214...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/E Log10[E],10,120][[1]] (* Harvey P. Dale, Aug 11 2019 *)

A050499 Nearest integer to n/log(n).

Original entry on oeis.org

3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17
Offset: 2

Views

Author

N. J. A. Sloane, Dec 27 1999

Keywords

Comments

The prime number theorem states that the number of primes <= x is asymptotic to x/log(x).
n/log(n) = n*A002285/log_10(n). [Eric Desbiaux, Jun 27 2009]
Similar to floor(1/(1-x)) where x^n=1/n. - Jon Perry, Oct 29 2013

References

  • Cf. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Theorem 6.

Crossrefs

Programs

  • JavaScript
    for (i=1;i<100;i++) {
    x=Math.pow(1/i,1/i);
    document.write(Math.floor(1/(1-x))+", ");
    }
    
  • Mathematica
    Table[Round[n/Log[n]],{n,2,80}] (* Harvey P. Dale, Nov 03 2013 *)
  • PARI
    a(n) = round(n/log(n)); \\ Michel Marcus, Jan 24 2025

A059549 Beatty sequence for 1 + 1/log(10).

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 10, 11, 12, 14, 15, 17, 18, 20, 21, 22, 24, 25, 27, 28, 30, 31, 32, 34, 35, 37, 38, 40, 41, 43, 44, 45, 47, 48, 50, 51, 53, 54, 55, 57, 58, 60, 61, 63, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 78, 80, 81, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 100
Offset: 1

Views

Author

Mitch Harris, Jan 22 2001

Keywords

Crossrefs

Beatty complement is A059550.
Cf. A002285.

Programs

  • Mathematica
    Floor[Range[100]*(1 + Log10[E])] (* Paolo Xausa, Jul 05 2024 *)
  • PARI
    { default(realprecision, 100); b=1 + 1/log(10); for (n = 1, 2000, write("b059549.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009

Formula

a(n) = floor(n*(1 + 1/log(10))). - Michel Marcus, Jan 04 2015

A099260 Number of decimal digits in (10^n)-th prime number.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
Offset: 0

Views

Author

Rick L. Shepherd, Oct 10 2004

Keywords

Comments

As lim {n->oo} p_n/(n log n) = 1 is equivalent to the prime number theorem, a good first approximation (without having done any detailed analysis) should be a(n)=floor(log_10((10^n)*log(10^n))), which correctly generates all the first 22 terms and predicts that the sequence will continue 24,25,...,43,44,46,47,...,435,436,438,439,...,4344,4345,4347,4348,...,4503,4504 through the first 4500 terms (with only 5,45,437,4346 not appearing - compare with the digits of log_10(e) in A002285).
Many terms of this sequence can be determined exactly using Dusart's bounds. The first missing terms are 5, 44, 435, 4344, 43430, 434295, 4342946, 43429449, 434294483, 4342944820, ....

Examples

			a(4) = 6 because A006988(4) = prime(10^4) = 104729 has six decimal digits.
		

Crossrefs

Cf. A006988 ((10^n)-th prime), A006880 (pi(10^n)), A099261 (bit lengths).

Programs

  • Mathematica
    Table[IntegerLength[Prime[10^n]],{n,0,75}] (* Harvey P. Dale, Dec 11 2020 *)
  • PARI
    a(n)=if(n<3,return(n+1));my(l=n*log(10),ll=log(l),lb=ceil(log(l+ll-1+(ll-2.2)/l)/log(10)),ub=ceil(log(l+ll-1+(ll-2)/l)/log(10)));if(lb==ub,n+lb,error("Cannot determine a("n")"))

Extensions

Extension, comment, link, and Pari program from Charles R Greathouse IV, Aug 03 2010

A114467 Number of decimal digits in the numerator of the 10^n-th harmonic number.

Original entry on oeis.org

1, 4, 41, 434, 4346, 43451, 434111, 4342303, 43428680
Offset: 0

Views

Author

Eric W. Weisstein, Nov 29 2005

Keywords

Comments

See A114468 for denominators.
Eric Weisstein's link conjectures that for both this sequence and A114468, a(n) ~ (log_10(e) = A002285)*10^n. - Natalia L. Skirrow, Jun 22 2023

Crossrefs

Programs

  • Mathematica
    Table[IntegerLength[Numerator[HarmonicNumber[10^n]]],{n,0,8}](* Harvey P. Dale, May 24 2019 *)
  • Python
    from gmpy2 import digits, mpq
    def a(n): return len(digits(sum(mpq(1, n) for n in range(1, 10**n+1)).numerator))
    print([a(n) for n in range(6)]) # Michael S. Branicky, Jun 22 2023

Extensions

Edited by Charles R Greathouse IV, Aug 05 2010

A059184 Engel expansion of 1/log(10) = 0.434294....

Original entry on oeis.org

3, 4, 5, 18, 27, 37, 415, 445, 1812, 2475, 3928, 6707, 14673, 65863, 89033, 265841, 1293955, 1525697, 2541166, 7906280, 107955268, 154190828, 887303031, 1767107652, 3068165143, 3209500563, 92762706640, 147991352023
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A002285 (1/log(10)).

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[1/Log[10], 7!], 100] (* Modified by G. C. Greubel, Dec 27 2016 *)

A130787 Decimal expansion of the square of Pi*log_10(e).

Original entry on oeis.org

1, 8, 6, 1, 5, 2, 2, 8, 3, 4, 9, 2, 2, 7, 5, 7, 4, 6, 4, 6, 8, 3, 2, 1, 5, 2, 1, 8, 7, 6, 2, 9, 8, 2, 3, 6, 7, 6, 1, 2, 9, 3, 7, 2, 8, 5, 8, 1, 3, 6, 9, 6, 5, 4, 4, 4, 2, 2, 0, 8, 2, 6, 3, 3, 2, 1, 1, 5, 2, 3, 8, 6, 2, 0, 1, 9, 2, 7, 2, 3, 6, 7, 1, 1, 5, 2, 6, 0, 6, 1, 6, 3, 1, 3, 7, 7, 5, 4, 4, 9, 8, 1, 5, 5, 0
Offset: 1

Views

Author

R. J. Mathar, Jul 15 2007

Keywords

Examples

			1.86152283492275746468321521876298236761293728581369654442208263321...
		

Crossrefs

Programs

  • Maple
    evalf((Pi/log(10) )^2);
  • Mathematica
    RealDigits[ (Pi/Log@10)^2, 10, 111][[1]] (* Robert G. Wilson v, Jul 19 2007 *)

Formula

Equals A002388*A002285^2 = (Pi/log(10))^2. - Robert G. Wilson v, Jul 19 2007

Extensions

More terms from Robert G. Wilson v, Jul 19 2007

A220260 Decimal expansion of e / log_10(e), where e = A001113.

Original entry on oeis.org

6, 2, 5, 9, 0, 7, 5, 2, 1, 6, 7, 6, 6, 3, 9, 5, 2, 1, 1, 0, 1, 8, 4, 7, 7, 3, 1, 1, 6, 7, 7, 7, 2, 7, 2, 8, 0, 5, 4, 6, 4, 5, 9, 9, 5, 4, 2, 5, 9, 4, 6, 9, 4, 2, 4, 2, 7, 7, 6, 9, 8, 1, 6, 9, 8, 5, 8, 4, 5, 3, 9, 9, 1, 7, 4, 4, 2, 2, 9, 9, 2, 4, 2, 8, 4, 1, 2
Offset: 1

Views

Author

Jaroslav Krizek, Dec 08 2012

Keywords

Comments

Minimum value of the function x / log_10(x) for x > 1, obtained at x = e.

Examples

			6.2590752167663952110184773116777272805464599542594694...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E/Log[10,E],10,120][[1]] (* Harvey P. Dale, Dec 23 2012 *)

Formula

Equals the ratio A001113 / A002285 and also the product A001113*A002392.

A275238 a(n) = n*(10^floor(log_10(n)+1) + 1) + (-1)^n.

Original entry on oeis.org

1, 10, 23, 32, 45, 54, 67, 76, 89, 98, 1011, 1110, 1213, 1312, 1415, 1514, 1617, 1716, 1819, 1918, 2021, 2120, 2223, 2322, 2425, 2524, 2627, 2726, 2829, 2928, 3031, 3130, 3233, 3332, 3435, 3534, 3637, 3736, 3839, 3938, 4041, 4140, 4243, 4342, 4445, 4544, 4647, 4746, 4849, 4948, 5051, 5150, 5253, 5352, 5455, 5554
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 21 2016

Keywords

Comments

Concatenation of n with n+(-1)^n (A004442).
Subsequence of A248378.
Primes in this sequence: 23, 67, 89, 1213, 3637, 4243, 5051, 5657, 6263, 6869, 7879, 8081, 9091, 9293, 9697, 102103, ... (A030458).
Numbers n such that a(n) is prime: 2, 6, 8, 12, 36, 42, 50, 56, 62, 68, 78, 80, 90, 92, 96, 102, 108, 120, 126, 138, ... (A030457).

Examples

			a(0) =  0 + 1 = 1;
a(1) = 11 - 1 = 10;
a(2) = 22 + 1 = 23;
a(3) = 33 - 1 = 32;
a(4) = 44 + 1 = 45;
a(5) = 55 - 1 = 54, etc.
or
a(0) =  1 -> concatenation of 0 with 0 + (-1)^0 = 1;
a(1) = 10 -> concatenation of 1 with 1 + (-1)^1 = 0;
a(2) = 23 -> concatenation of 2 with 2 + (-1)^2 = 3;
a(3) = 32 -> concatenation of 3 with 3 + (-1)^3 = 2;
a(4) = 45 -> concatenation of 4 with 4 + (-1)^4 = 5;
a(5) = 54 -> concatenation of 5 with 5 + (-1)^5 = 4, etc.
........................................................
a(2k) = 1, 23, 45, 67, 89, 1011, 1213, 1415, 1617, 1819, ...
		

Crossrefs

Programs

  • Mathematica
    Table[n (10^Floor[Log[10, n] + 1] + 1) + (-1)^n, {n, 0, 55}]
  • PARI
    a(n) = if(n, n*(10^(logint(n,10)+1) + 1) + (-1)^n, 1) \\ Charles R Greathouse IV, Jul 21 2016

Formula

a(n) = A020338(n) + A033999(n).
a(2k) = A030656(k).
A064834(a(n)) > 0, for n > 0.
a(n) ~ 10*n*10^floor(c*log(n)), where c = 1/log(10) = 0.4342944819... = A002285.

A282152 Decimal expansion of 20/log(10).

Original entry on oeis.org

8, 6, 8, 5, 8, 8, 9, 6, 3, 8, 0, 6, 5, 0, 3, 6, 5, 5, 3, 0, 2, 2, 5, 7, 8, 3, 7, 8, 3, 3, 2, 1, 0, 1, 6, 4, 5, 8, 8, 7, 9, 4, 0, 1, 1, 6, 0, 7, 3, 3, 3, 1, 3, 2, 2, 2, 8, 9, 0, 7, 5, 6, 6, 3, 3, 1, 7, 2, 9, 2, 9, 8, 4, 1, 7, 7, 4, 1, 5, 4, 9, 4, 5, 8, 4, 4, 9, 8, 9, 8, 6, 7, 6, 8, 6, 3, 4, 9, 6, 6, 3, 7, 4, 1, 2
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 20 2017

Keywords

Examples

			1 neper = 8.685889638 dB.
8.685889638065036553022578378332101645887940116073331322289075663317292984177...
		

References

  • Herman Medwin, "Sounds in the Sea: From Ocean Acoustics to Acoustical", Cambridge University Press, 2005, pp. 68-70.

Crossrefs

Cf. A002392.

Programs

  • Magma
    SetDefaultRealField(RealField(105)); n:=20/Log(10); Reverse(Intseq(Floor(10^104*n)));
    
  • Mathematica
    RealDigits[20/Log[10], 10, 111][[1]] (* Robert G. Wilson v, Feb 20 2017 *)
  • PARI
    20/log(10)

Formula

Equals 20*A002285 = 20/A002392.
Showing 1-10 of 10 results.