cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002476 Primes of the form 6m + 1.

Original entry on oeis.org

7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 307, 313, 331, 337, 349, 367, 373, 379, 397, 409, 421, 433, 439, 457, 463, 487, 499, 523, 541, 547, 571, 577, 601, 607, 613, 619
Offset: 1

Views

Author

Keywords

Comments

Equivalently, primes of the form 3m + 1.
Rational primes that decompose in the field Q(sqrt(-3)). - N. J. A. Sloane, Dec 25 2017
Primes p dividing Sum_{k=0..p} binomial(2k, k) - 3 = A006134(p) - 3. - Benoit Cloitre, Feb 08 2003
Primes p such that tau(p) == 2 (mod 3) where tau(x) is the Ramanujan tau function (cf. A000594). - Benoit Cloitre, May 04 2003
Primes of the form x^2 + xy - 2y^2 = (x+2y)(x-y). - N. J. A. Sloane, May 31 2014
Primes of the form x^2 - xy + 7y^2 with x and y nonnegative. - T. D. Noe, May 07 2005
Primes p such that p^2 divides Sum_{m=1..2(p-1)} Sum_{k=1..m} (2k)!/(k!)^2. - Alexander Adamchuk, Jul 04 2006
A006512 larger than 5 (Greater of twin primes) is a subsequence of this. - Jonathan Vos Post, Sep 03 2006
A039701(A049084(a(n))) = A134323(A049084(a(n))) = 1. - Reinhard Zumkeller, Oct 21 2007
Also primes p such that the arithmetic mean of divisors of p^2 is an integer: sigma_1(p^2)/sigma_0(p^2) = C. (A000203(p^2)/A000005(p^2) = C). - Ctibor O. Zizka, Sep 15 2008
Fermat knew that these numbers can also be expressed as x^2 + 3y^2 and are therefore not prime in Z[omega], where omega is a complex cubic root of unity. - Alonso del Arte, Dec 07 2012
Primes of the form x^2 + xy + y^2 with x < y and nonnegative. Also see A007645 which also applies when x=y, adding an initial 3. - Richard R. Forberg, Apr 11 2016
For any term p in this sequence, let k = (p^2 - 1)/6; then A016921(k) = p^2. - Sergey Pavlov, Dec 16 2016; corrected Dec 18 2016
For the decomposition p=x^2+3*y^2, x(n) = A001479(n+1) and y(n) = A001480(n+1). - R. J. Mathar, Apr 16 2024

Examples

			Since 6 * 1 + 1 = 7 and 7 is prime, 7 is in the sequence. (Also 7 = 2^2 + 3 * 1^2 = (2 + sqrt(-3))(2 - sqrt(-3)).)
Since 6 * 2 + 1 = 13 and 13 is prime, 13 is in the sequence.
17 is prime but it is of the form 6m - 1 rather than 6m + 1, and is therefore not in the sequence.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • David A. Cox, Primes of the Form x^2 + ny^2. New York: Wiley (1989): 8.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 261.

Crossrefs

For values of m see A024899. Primes of form 3n - 1 give A003627.
These are the primes arising in A024892, A024899, A034936.
A091178 gives prime index.
Subsequence of A016921 and of A050931.
Cf. A004611 (multiplicative closure).

Programs

  • GAP
    Filtered(List([0..110],k->6*k+1),n-> IsPrime(n)); # Muniru A Asiru, Mar 11 2019
  • Haskell
    a002476 n = a002476_list !! (n-1)
    a002476_list = filter ((== 1) . (`mod` 6)) a000040_list
    -- Reinhard Zumkeller, Jan 15 2013
    
  • J
    (#~ 1&p:) >: 6 * i.1000 NB. Stephen Makdisi, May 01 2018
    
  • Magma
    [n: n in [1..700 by 6] | IsPrime(n)]; // Vincenzo Librandi, Apr 05 2011
    
  • Maple
    a := [ ]: for n from 1 to 400 do if isprime(6*n+1) then a := [ op(a), n ]; fi; od: A002476 := n->a[n];
  • Mathematica
    Select[6*Range[100] + 1, PrimeQ[ # ] &] (* Stefan Steinerberger, Apr 06 2006 *)
  • PARI
    select(p->p%3==1,primes(100)) \\ Charles R Greathouse IV, Oct 31 2012
    

Formula

From R. J. Mathar, Apr 03 2011: (Start)
Sum_{n >= 1} 1/a(n)^2 = A175644.
Sum_{n >= 1} 1/a(n)^3 = A175645. (End)
a(n) = 6*A024899(n) + 1. - Zak Seidov, Aug 31 2016
From Vaclav Kotesovec, May 02 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = 1/A175646.
Product_{k>=1} (1 + 1/a(k)^2) = A334481.
Product_{k>=1} (1 - 1/a(k)^3) = A334478.
Product_{k>=1} (1 + 1/a(k)^3) = A334477. (End)
Legendre symbol (-3, a(n)) = +1 and (-3, A007528(n)) = -1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - Wolfdieter Lang, Mar 03 2021