A002476 Primes of the form 6m + 1.
7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 307, 313, 331, 337, 349, 367, 373, 379, 397, 409, 421, 433, 439, 457, 463, 487, 499, 523, 541, 547, 571, 577, 601, 607, 613, 619
Offset: 1
Examples
Since 6 * 1 + 1 = 7 and 7 is prime, 7 is in the sequence. (Also 7 = 2^2 + 3 * 1^2 = (2 + sqrt(-3))(2 - sqrt(-3)).) Since 6 * 2 + 1 = 13 and 13 is prime, 13 is in the sequence. 17 is prime but it is of the form 6m - 1 rather than 6m + 1, and is therefore not in the sequence.
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
- David A. Cox, Primes of the Form x^2 + ny^2. New York: Wiley (1989): 8.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 261.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- C. Banderier, Calcul de (-3/p)
- Barry Brent, Finite Field Models of Polynomials Interpolating Fourier Coefficients of Modular Functions for Hecke Groups, Integers (2024) Vol. 24, Art. No. A18. See p. 13.
- F. S. Carey, On some cases of the Solutions of the Congruence z^p^(n-1)=1, mod p, Proceedings of the London Mathematical Society, Volume s1-33, Issue 1, November 1900, Pages 294-312.
- A. Granville and G. Martin, Prime number races, arXiv:math/0408319 [math.NT], 2004.
- Jorma K. Merikoski, Pentti Haukkanen, and Timo Tossavainen, The congruence x^n = -a^n (mod m): Solvability and related OEIS sequences, Notes. Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 516-529. See p. 526.
- K. G. Reuschle, Tafeln complexer Primzahlen, Königl. Akademie der Wissenschaften, Berlin, 1875, p. 1.
- Neville Robbins, On the Infinitude of Primes of the Form 3k+1, Fib. Q., 43,1 (2005), 29-30.
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- Index to sequences related to decomposition of primes in quadratic fields
Crossrefs
Programs
-
GAP
Filtered(List([0..110],k->6*k+1),n-> IsPrime(n)); # Muniru A Asiru, Mar 11 2019
-
Haskell
a002476 n = a002476_list !! (n-1) a002476_list = filter ((== 1) . (`mod` 6)) a000040_list -- Reinhard Zumkeller, Jan 15 2013
-
J
(#~ 1&p:) >: 6 * i.1000 NB. Stephen Makdisi, May 01 2018
-
Magma
[n: n in [1..700 by 6] | IsPrime(n)]; // Vincenzo Librandi, Apr 05 2011
-
Maple
a := [ ]: for n from 1 to 400 do if isprime(6*n+1) then a := [ op(a), n ]; fi; od: A002476 := n->a[n];
-
Mathematica
Select[6*Range[100] + 1, PrimeQ[ # ] &] (* Stefan Steinerberger, Apr 06 2006 *)
-
PARI
select(p->p%3==1,primes(100)) \\ Charles R Greathouse IV, Oct 31 2012
Formula
From R. J. Mathar, Apr 03 2011: (Start)
Sum_{n >= 1} 1/a(n)^2 = A175644.
Sum_{n >= 1} 1/a(n)^3 = A175645. (End)
a(n) = 6*A024899(n) + 1. - Zak Seidov, Aug 31 2016
From Vaclav Kotesovec, May 02 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = 1/A175646.
Product_{k>=1} (1 + 1/a(k)^2) = A334481.
Product_{k>=1} (1 - 1/a(k)^3) = A334478.
Product_{k>=1} (1 + 1/a(k)^3) = A334477. (End)
Legendre symbol (-3, a(n)) = +1 and (-3, A007528(n)) = -1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - Wolfdieter Lang, Mar 03 2021
Comments