cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A274903 Largest prime factor of 4^n + 1.

Original entry on oeis.org

2, 5, 17, 13, 257, 41, 241, 113, 65537, 109, 61681, 2113, 673, 1613, 15790321, 1321, 6700417, 26317, 38737, 525313, 4278255361, 14449, 2931542417, 30269, 22253377, 268501, 308761441, 279073, 54410972897, 536903681, 4562284561, 384773, 67280421310721
Offset: 0

Views

Author

Vincenzo Librandi, Jul 11 2016

Keywords

Examples

			4^3 + 1 = 65 = 5*13, so a(3) = 13.
		

Crossrefs

Cf. largest prime factor of k^n+1: A002587 (k=2), A074476 (k=3), this sequence (k=4), A074478 (k=5), A274904 (k=6), A227575 (k=7), A274905 (k=8), A002592 (k=9), A003021 (k=10), A062308 (k=11).

Programs

  • Magma
    [Maximum(PrimeDivisors(4^n+1)): n in [0..35]];
    
  • Mathematica
    Table[FactorInteger[4^n + 1][[-1, 1]], {n, 0, 30}]
  • PARI
    a(n)=my(f=factor(4^n+1)[,1]); f[#f] \\ Charles R Greathouse IV, Jul 12 2016

Formula

a(n) = A006530(A052539(n)). - Michel Marcus, Jul 11 2016
a(2n) = A002590(n). a(2n+1) = A229747(n). - R. J. Mathar, Feb 28 2018
a(n) = A002587(2*n). - Amiram Eldar, Feb 01 2020

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Jul 12 2016
a(101)-a(531) in b-file from Amiram Eldar, Feb 01 2020
a(532)-a(583) in b-file from Max Alekseyev, Apr 25 2022, Mar 15 2025

A366720 Largest prime factor of 12^n+1.

Original entry on oeis.org

2, 13, 29, 19, 233, 19141, 20593, 13063, 260753, 1801, 85403261, 57154490053, 2227777, 222379, 13156924369, 35671, 1200913648289, 66900193189411, 122138321401, 905265296671, 67657441, 1885339, 68368660537, 49489630860836437, 592734049, 438472201
Offset: 0

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[12^n + 1][[-1, 1]], {n, 0, 20}]

Formula

a(n) = A006530(A178248(n)). - Paul F. Marrero Romero, Dec 07 2023

A243572 Irregular triangular array generated as in Comments; contains every positive integer exactly once.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 5, 7, 10, 12, 18, 27, 8, 11, 13, 15, 19, 21, 28, 30, 36, 54, 81, 14, 16, 20, 22, 24, 29, 31, 33, 37, 39, 45, 55, 57, 63, 82, 84, 90, 108, 162, 243, 17, 23, 25, 32, 34, 38, 40, 42, 46, 48, 56, 58, 60, 64, 66, 72, 83, 85, 87, 91, 93, 99, 109
Offset: 1

Views

Author

Clark Kimberling, Jun 07 2014

Keywords

Comments

Decree that row 1 is (1), row 2 is (2, 3), and row 3 is (4, 6, 9). Let r(n) = A001590(n+2), so that r(r) = r(n-1) + r(n-2) + r(n-3) with r(1) =1, r(2) = 2, r(3) = 3. Row n of the array, for n >= 4, consists of the numbers, in increasing order, defined as follows: all 3*x from x in row n-1, together with all 1 + 3*x from x in row n-2, together with all 2 + 3*x from x in row n-3. Thus, the number of numbers in row n is r(n), a tribonacci number. Every positive integer occurs exactly once in the array, so that the resulting sequence is a permutation of the positive integers.

Examples

			First 5 rows of the array:
1
2 ... 3
4 ... 6 ... 9
5 ... 7 ... 10 .. 12 .. 18 .. 27
8 ... 11 .. 13 .. 15 .. 19 .. 21 .. 28 .. 30 .. 36 .. 54 .. 81
		

Crossrefs

Programs

  • Mathematica
    z = 10; g[1] = {1}; f1[x_] := x + 1; f2[x_] := 3 x; h[1] = g[1];
    b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]];
    h[n_] := h[n] = Union[h[n - 1], g[n - 1]];
    g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]]
    u = Table[g[n], {n, 1, z}]; v = Flatten[u]  (* A243572 *)

A324941 Largest prime factor of 17^n + 1.

Original entry on oeis.org

2, 3, 29, 13, 41761, 101, 83233, 22796593, 184417, 5653, 63541, 87415373, 72337, 2001793, 100688449, 238212511, 52548582913, 45957792327018709121, 382069, 20352763, 1186844128302568601, 88109799136087, 6901823633, 1109309383381084655697725873, 48661191868691111041
Offset: 0

Views

Author

Vincenzo Librandi, Apr 05 2019

Keywords

Crossrefs

Programs

  • Magma
    [Maximum(PrimeDivisors(17^n + 1)): n in [0..40]];
    
  • Mathematica
    Table[FactorInteger[17^n + 1] [[-1,1]], {n, 0, 30}]
  • PARI
    a(n) = vecmax(factor(17^n+1)[, 1]); \\ Jinyuan Wang, Apr 05 2019

Formula

a(n) = A006530(A224384(n)).

A195439 Numbers n such that 16^n + 1 is a semiprime.

Original entry on oeis.org

3, 5, 7, 8, 10, 16, 23, 26, 32, 37, 64, 89, 149, 173, 251, 307, 317, 956, 30197, 46058
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 19 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[37], PrimeOmega[16^# + 1] == 2 &] (* Arkadiusz Wesolowski, Dec 15 2011 *)

A176689 Prime factors of 2^128 - 1.

Original entry on oeis.org

3, 5, 17, 257, 641, 65537, 274177, 6700417, 67280421310721
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Extensions

Edited by T. D. Noe, May 06 2010
Typo in definition corrected by Arkadiusz Wesolowski, Feb 17 2011
Showing 1-6 of 6 results.