A002623 Expansion of 1/((1-x)^4*(1+x)).
1, 3, 7, 13, 22, 34, 50, 70, 95, 125, 161, 203, 252, 308, 372, 444, 525, 615, 715, 825, 946, 1078, 1222, 1378, 1547, 1729, 1925, 2135, 2360, 2600, 2856, 3128, 3417, 3723, 4047, 4389, 4750, 5130, 5530, 5950, 6391, 6853, 7337, 7843, 8372, 8924, 9500
Offset: 0
Examples
G.f. = 1 + 3*x + 7*x^2 + 13*x^3 + 22*x^4 + 34*x^5 + 50*x^6 + 70*x^7 + 95*x^8 + ...
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 74, Problem 7.
- P. Diaconis, R. L. Graham and B. Sturmfels, Primitive partition identities, in Combinatorics: Paul Erdős is Eighty, Vol. 2, Bolyai Soc. Math. Stud., 2, 1996, pp. 173-192.
- H. Gupta, Partitions of j-partite numbers into twelve or a smaller number of parts. Collection of articles dedicated to Professor P. L. Bhatnagar on his sixtieth birthday. Math. Student 40 (1972), 401-441 (1974).
- I. Siap, Linear codes over F_2 + u*F_2 and their complete weight enumerators, in Codes and Designs (Ohio State, May 18, 2000), pp. 259-271. De Gruyter, 2002.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- A. Atmaca and A. Yavuz Oruç, On the size of two families of unlabeled bipartite graphs, AKCE International Journal of Graphs and Combinatorics, 2017.
- M. Benoumhani and M. Kolli, Finite topologies and partitions, JIS 13 (2010) # 10.3.5, Lemma 6 5th line.
- Allan Bickle and Zhongyuan Che, Wiener indices of maximal k-degenerate graphs, arXiv:1908.09202 [math.CO], 2019.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Shalosh B. Ekhad and Doron Zeilberger, Computerizing the Andrews-Fraenkel-Sellers Proofs on the Number of m-ary partitions mod m (and doing MUCH more!), arXiv preprint arXiv:1511.06791 [math.CO], 2015.
- E. Fix and J. L. Hodges, Significance probabilities of the Wilcoxon test, Annals Math. Stat., 26 (1955), 301-312. [Annotated scanned copy]
- E. Fix and J. L. Hodges, Jr., Significance probabilities of the Wilcoxon test, Annals Math. Stat., 26 (1955), 301-312.
- Enrique González-Jiménez and Xavier Xarles, On a conjecture of Rudin on squares in Arithmetic Progressions, arXiv preprint arXiv:1301.5122 [math.NT], 2013.
- H. Gupta, Partitions of j-partite numbers into twelve or a smaller number of parts, Math. Student 40 (1972), 401-441 (1974). [Annotated scanned copy]
- M. A. Harrison, On the number of classes of binary matrices, IEEE Trans. Computers, 22 (1973), 1048-1051. doi:10.1109/T-C.1973.223649.
- M. A. Harrison, On the number of classes of binary matrices, IEEE Transactions on Computers, C-22.12 (1973), 1048-1052. (Annotated scanned copy)
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 203
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 413
- Vladeta Jovovic, Binary matrices up to row and column permutations
- A. Kerber, Experimentelle Mathematik, Séminaire Lotharingien de Combinatoire. Institut de Recherche Math. Avancée, Université Louis Pasteur, Strasbourg, Actes 19 (1988), 77-83. [Annotated scanned copy]. See page 79.
- W. Lanssens, B. Demoen, and P.-L. Nguyen, The Diagonal Latin Tableau and the Redundancy of its Disequalities, Report CW 666, July 2014, Department of Computer Science, KU Leuven
- M. E. Larsen, The eternal triangle - a history of a counting problem, College Math. J., 20 (1989), 370-392.
- P. Lisonek, Quasi-polynomials: A case study in experimental combinatorics, RISC-Linz Report Series No. 93-18, 1983. (Annotated scanned copy)
- Math StackExchange, cycle index for S_2 X S_4, Apr. 2021
- B. Misek, On the number of classes of strongly equivalent incidence matrices, (Czech with English summary) Casopis Pest. Mat. 89 1964 211-218. See page 217.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- Brian O'Sullivan and Thomas Busch, Spontaneous emission in ultra-cold spin-polarised anisotropic Fermi seas, arXiv 0810.0231v1 [quant-ph], 2008. [Eq 10a, lambda=2]
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Giovanni Resta, Illustration for a(8)=70.
- Marko Riedel, The O.g.f. of inequivalent colorings of a 2xN board with C colors in N is (1/2) 1/(1-w)^(C^2) + (1/2) 1/(1+w)^(C(C-1)/2)*1/(1-w)^(C(C+1)/2) by PET
- Sebastian Sassi, Aula Al-Adulrazzaq, Matti Heikinheimo, and Kimmo Tuominen, Fast numerical evaluation of dark matter direct detection event rates, arXiv:2504.19714 [hep-ph], 2025. See p. 7.
- Atsuto Seko, Tutorial: Systematic development of polynomial machine learning potentials for elemental and alloy systems, J. Appl. Phys. (2023) Vol. 133, 011101.
- J. Silverman, V. E. Vickers and J. M. Mooney, On the number of Costas arrays as a function of array size, Proc. IEEE, 76 (1988), 851-853.
- Eric Weisstein's World of Mathematics, Triangle Counting.
- W. S. B. Woolhouse, Problem 2420. On the probability of the number of triangles, Mathematical questions with their solutions, v. 9 (June 1868), pp. 63-65.
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).
Crossrefs
Programs
-
Maple
A002623 := n->(1/16)*(1+(-1)^n)+(n+1)/8+binomial(n+2,2)/4+binomial(n+3,3)/2; seq( ((2*n+3)*(n+2)*(n+1)/6-floor((n+2)/2))/4,n=1..47); # Lewis a := n -> ((-1)^n*3 + 45 + 68*n + 30*n^2 + 4*n^3) / 48: seq(a(n), n=0..46); # Peter Luschny, Jan 22 2018
-
Mathematica
CoefficientList[Series[1/((1-x)^3(1-x^2)),{x,0,50}],x] (* or *) LinearRecurrence[{3,-2,-2,3,-1},{1,3,7,13,22},50] (* Harvey P. Dale, Jul 19 2011 *) Table[((2 n^3 + 15 n^2 + 34 n + 45 / 2 + (3/2) (-1)^n) / 24), {n, 0, 100}] (* Vincenzo Librandi, Jan 15 2018 *) a[ n_] := Floor[(n + 2)*(n + 4)*(2*n + 3)/24]; (* Michael Somos, Feb 19 2024 *)
-
PARI
{a(n) = (8 + 34/3*n + 5*n^2 + 2/3*n^3) \ 8}; /* Michael Somos, Sep 04 1999 */
-
PARI
x='x+O('x^50); Vec(1/((1 - x)^3 * (1 - x^2))) \\ Indranil Ghosh, Apr 04 2017
-
Python
def A002623(n): return ((n+2)*(n+4)*((n<<1)+3)>>3)//3 # Chai Wah Wu, Mar 25 2024
Formula
a(n+1) = a(n) + {(k-1)*k if n=2*k} or {k*k if n=2*k+1}.
a(n)+a(n+1) = A000292(n+1).
Also: a(n) = C(n+3, 3) - a(n-1) with a(0)=1. - Labos Elemer, Apr 26 2003
From Paul Barry, Jul 01 2003: (Start)
a(n) = Sum_{k=0..n} (-1)^(n-k)*C(k+3,3).
The signed version 1, -3, 7, ... has the formula:
a(n) = (4*n^3 + 30*n^2 + 68*n + 45)*(-1)^n/48 + 1/16.
This is the partial sums of the signed version of A000292. (End)
From Paul Barry, Jul 21 2003: (Start)
a(n) = Sum_{k=0..n} floor((k+2)^2/4).
a(n) = Sum_{k=0..n} Sum_{j=0..k} Sum_{i=0..j} (1+(-1)^i)/2. (End)
a(n) = a(n - 2) + (n*(n - 1))/2, with n>2, a(1)=0, a(2)=1; a(n) = (4*n^3+6*n^2-4*n+3*(-1)^n-3)/48, with offset 2. - Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 14 2004 (formula simplified by Bruno Berselli, Aug 29 2013)
a(n) = ((2*n+3)*(n+2)*(n+1)/6-floor((n+2)/2))/4, with offset 1. - Jerry W. Lewis (JLewis(AT)wyeth.com), Mar 23 2005
a(n) = 2*a(n-1) - a(n-2) + 1 + floor(n/2). - Bjorn Kjos-Hanssen (bjorn(AT)math.uconn.edu), Nov 10 2005
A002620(n+3) = a(n+1) - a(n). - Michael Somos, Sep 04 1999
Euler transform of length 2 sequence [ 3, 1]. - Michael Somos, Sep 04 2006
a(n) = -a(-5-n) for all n in Z. - Michael Somos, Sep 04 2006
Let P(i,k) be the number of integer partitions of n into k parts, then with k=2 we have a(n) = sum_{m=1}^{n} sum_{i=k}^{m} P(i,k). For k=1 we get A000217 = triangular numbers. - Thomas Wieder, Feb 18 2007
a(n) = (n+(3+(-1)^n)/2)*(n+(7+(-1)^n)/2)*(2*n+5-2*(-1)^n)/24. - Philippe LALLOUET (philip.lallouet(AT)orange.fr), Oct 19 2007 (corrected by Bruno Berselli, Aug 30 2013)
From Johannes W. Meijer, May 20 2011: (Start)
a(0)=1, a(1)=3, a(2)=7, a(3)=13, a(4)=22; for n > 4, a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5). - Harvey P. Dale, Jul 19 2011
a(n) = Sum_{i=0..n+2} floor(i/2)*ceiling(i/2). - Bruno Berselli, Aug 30 2013
a(n) = 15/16 + (1/16)*(-1)^n + (17/12)*n + (5/8)*n^2 + (1/12)*n^3. - Robert Israel, Jul 07 2014
a(n) = Sum_{i=0..n+2} (n+1-i)*floor(i/2+1). - Bruno Berselli, Apr 04 2017
a(n) = 1 + floor((2*n^3 + 15*n^2 + 34*n) / 24). - Allan Bickle, Aug 01 2020
E.g.f.: ((24 + 51*x + 21*x^2 + 2*x^3)*cosh(x) + (21 + 51*x + 21*x^2 + 2*x^3)*sinh(x))/24. - Stefano Spezia, Jun 02 2021
Comments