A002694 Binomial coefficients C(2n, n-2).
1, 6, 28, 120, 495, 2002, 8008, 31824, 125970, 497420, 1961256, 7726160, 30421755, 119759850, 471435600, 1855967520, 7307872110, 28781143380, 113380261800, 446775310800, 1761039350070, 6943526580276, 27385657281648, 108043253365600
Offset: 2
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 517.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 2..200
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Henry Bottomley, Illustration for A000108, A001147, A002694, A067310 and A067311
- Milan Janjic, Two Enumerative Functions
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv:1301.4550 [math.CO], 2013. - _N. J. A. Sloane_, Feb 13 2013
- Milan Janjic and Boris Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014), Article 14.3.5.
- O. Khorunzhiy, On high moments and the spectral norm of large dilute Wigner random matrices, arXiv:1107.5724 [math-ph], 2014.
- O. Khorunzhiy, On high moments and the spectral norm of large dilute Wigner random matrices, Zh. Mat. Fiz. Anal. Geom. 10 (1) (2014), pp. 64-125.
- W. Krandick, Trees and jumps and real roots, J. Computational and Applied Math., 162, 2004, 51-55.
- C. Lanczos, Applied Analysis (Annotated scans of selected pages)
- Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Article 12.3.3, 2012. - From _N. J. A. Sloane_, Sep 16 2012
- V. Pilaud and J. Rué, Analytic combinatorics of chord and hyperchord diagrams with k crossings, arXiv:1307.6440 [math.CO], 2013; Adv. Appl. Math. 57 (2014) 60-100.
- Mark Shattuck, Enumeration of non-crossing partitions according to subwords with repeated letters, arXiv:2303.06300 [math.CO], 2023.
- Daniel W. Stasiuk, An Enumeration Problem for Sequences of n-ary Trees Arising from Algebraic Operads, Master's Thesis, University of Saskatchewan-Saskatoon (2018).
- T. Tao and Van Vu, Random matrices: localization of the eigenvalues and the necessity of four moments, arXiv:1005.2901 [math.PR], 2010-2011; Acta Math. Vietnam 36 (2) (2011) 431-449.
- N. J. Wildberger and Dean Rubine, A Hyper-Catalan Series Solution to Polynomial Equations, and the Geode, Amer. Math. Monthly (2025). See section 12.
- Lin Yang and Shengliang Yang, Protected Branches in Ordered Trees, J. Math. Study (2023) Vol. 56, No. 1, 1-17.
Crossrefs
Programs
-
GAP
List([2..30], n-> Binomial(2*n,n-2)); # G. C. Greubel, Mar 21 2019
-
Haskell
a002694 n = a007318' (2 * n) (n - 2) -- Reinhard Zumkeller, Jun 18 2012
-
Magma
[Binomial(2*n, n-2): n in [2..30]]; // Vincenzo Librandi, Apr 20 2015
-
Maple
a:=n->sum(binomial(n,j-1)*binomial(n,j+1),j=1..n): seq(a(n), n=2..25); # Zerinvary Lajos, Nov 26 2006
-
Mathematica
CoefficientList[ Series[ 16/(((Sqrt[1 - 4 x] + 1)^4)*Sqrt[1 - 4 x]), {x, 0, 23}], x] (* Robert G. Wilson v, Aug 08 2011 *) Table[Binomial[2n,n-2],{n,2,30}] (* Harvey P. Dale, Jun 12 2014 *)
-
PARI
{a(n) = binomial(2*n,n-2)}; \\ G. C. Greubel, Mar 21 2019
-
Sage
[binomial(2*n,n-2) for n in (2..30)] # G. C. Greubel, Mar 21 2019
Formula
a(n) = A067310(n, 1) as this is number of ways of arranging n chords on a circle (handshakes between 2n people across a table) with exactly 1 simple intersection. - Henry Bottomley, Oct 07 2002
E.g.f.: exp(2*x) * BesselI(2, 2*x). - Vladeta Jovovic, Aug 21 2003
G.f.: (1-sqrt(1-4*z))^4/(16*z^2*sqrt(1-4*z)). - Emeric Deutsch, Jan 28 2004
a(n) = Sum_{k=0..n} C(n, k)*C(n, k+2). - Paul Barry, Sep 20 2004
D-finite with recurrence: -(n-2)*(n+2)*a(n) + 2*n*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Dec 04 2012
G.f.: z^2*C(z)^4/(1-2*z*C(z)), where C(z) is the g.f. of Catalan numbers. - José Luis Ramírez Ramírez, Apr 19 2015
a(n) = Sum_{k=1..n} binomial(2*n-k,n-k-1). - Vladimir Kruchinin, Oct 22 2016
G.f.: x^2* 2F1(5/2,3;5;4*x). - R. J. Mathar, Jan 27 2020
From Amiram Eldar, May 16 2022: (Start)
Sum_{n>=2} 1/a(n) = 23/6 - 13*Pi/(9*sqrt(3)).
Sum_{n>=2} (-1)^n/a(n) = 106*log(phi)/(5*sqrt(5)) - 37/10, where phi is the golden ratio (A001622). (End)
From Peter Bala, Oct 13 2024: (Start)
a(n) = Integral_{x = 0..4} x^n * w(x) dx, where the weight function w(x) = 1/(2*Pi) * (x^2 - 4*x + 2)/sqrt(x*(4 - x)).
Comments