A002865 Number of partitions of n that do not contain 1 as a part.
1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, 34, 41, 55, 66, 88, 105, 137, 165, 210, 253, 320, 383, 478, 574, 708, 847, 1039, 1238, 1507, 1794, 2167, 2573, 3094, 3660, 4378, 5170, 6153, 7245, 8591, 10087, 11914, 13959, 16424, 19196, 22519, 26252, 30701
Offset: 0
Examples
a(6) = 4 from 6 = 4+2 = 3+3 = 2+2+2. G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 4*x^7 + 7*x^8 + 8*x^9 + ... From _Gus Wiseman_, May 19 2019: (Start) The a(2) = 1 through a(9) = 8 partitions not containing 1 are the following. The Heinz numbers of these partitions are given by A005408. (2) (3) (4) (5) (6) (7) (8) (9) (22) (32) (33) (43) (44) (54) (42) (52) (53) (63) (222) (322) (62) (72) (332) (333) (422) (432) (2222) (522) (3222) The a(2) = 1 through a(9) = 8 partitions of n - 1 whose least part appears exactly once are the following. The Heinz numbers of these partitions are given by A247180. (1) (2) (3) (4) (5) (6) (7) (8) (21) (31) (32) (42) (43) (53) (41) (51) (52) (62) (221) (321) (61) (71) (331) (332) (421) (431) (2221) (521) (3221) The a(2) = 1 through a(9) = 8 partitions of n + 1 where the number of parts is itself a part are the following. The Heinz numbers of these partitions are given by A325761. (21) (22) (32) (42) (52) (62) (72) (82) (311) (321) (322) (332) (333) (433) (331) (431) (432) (532) (4111) (4211) (531) (631) (4221) (4222) (4311) (4321) (51111) (4411) (52111) The a(2) = 1 through a(8) = 7 partitions of n whose greatest part appears at least twice are the following. The Heinz numbers of these partitions are given by A070003. (11) (111) (22) (221) (33) (331) (44) (1111) (11111) (222) (2221) (332) (2211) (22111) (2222) (111111) (1111111) (3311) (22211) (221111) (11111111) Nonisomorphic representatives of the a(2) = 1 through a(6) = 4 2-regular multigraphs with n edges and n vertices are the following. {12,12} {12,13,23} {12,12,34,34} {12,12,34,35,45} {12,12,34,34,56,56} {12,13,24,34} {12,13,24,35,45} {12,12,34,35,46,56} {12,13,23,45,46,56} {12,13,24,35,46,56} The a(2) = 1 through a(9) = 8 partitions of n with no part greater than the number of ones are the following. The Heinz numbers of these partitions are given by A325762. (11) (111) (211) (2111) (2211) (22111) (22211) (33111) (1111) (11111) (3111) (31111) (32111) (222111) (21111) (211111) (41111) (321111) (111111) (1111111) (221111) (411111) (311111) (2211111) (2111111) (3111111) (11111111) (21111111) (111111111) (End)
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 836.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 115, p*(n).
- H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P. G. Tait, Scientific Papers, Cambridge Univ. Press, Vol. 1, 1898, Vol. 2, 1900, see Vol. 1, p. 334.
Links
- Andrew van den Hoeven, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- A. P. Akande et al., Computational study of non-unitary partitions, arXiv:2112.03264 [math.CO], 2021.
- Colin Albert, Olivia Beckwith, Irfan Demetoglu, Robert Dicks, John H. Smith, and Jasmine Wang, Integer partitions with large Dyson rank, arXiv:2203.08987 [math.NT], 2022.
- Max A. Alekseyev and Allan Bickle, Forbidden Subgraphs of Single Graphs, (2024). See p. 6.
- Kevin Beanland and Hung Viet Chu, On Schreier-type Sets, Partitions, and Compositions, arXiv:2311.01926 [math.CO], 2023.
- G. Dahl and T. A. Haufmann, Zero-one completely positive matrices and the A(R,S) classes, Preprint, 2016.
- Atul Dixit, Gaurav Kumar, and Aviral Srivastava, Non-Rascoe partitions and a rank parity function associated to the Rogers-Ramanujan partitions, arXiv:2508.04359 [math.CO], 2025. See references.
- R. P. Gallant, G. Gunther, B. L. Hartnell, and D. F. Rall, A game of edge removal on graphs, JCMCC, 57 (2006), 75 - 82.
- Edray Herber Goins and Talitha M. Washington, On the generalized climbing stairs problem, Ars Combin. 117 (2014), 183-190. MR3243840 (Reviewed), arXiv:0909.5459 [math.CO], 2009.
- H. Gropp, On tactical configurations, regular bipartite graphs and (v,k,even)-designs, Discr. Math., 155 (1996), 81-98.
- R. K. Guy and N. J. A. Sloane, Correspondence, 1988.
- Cristiano Husu, The butterfly sequence: the second difference sequence of the numbers of integer partitions with distinct parts, its pentagonal number structure, its combinatorial identities and the cyclotomic polynomials 1-x and 1+x+x^2, arXiv:1804.09883 [math.NT], 2018.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 100
- Wenwei Li, Approximation of the Partition Number After Hardy and Ramanujan: An Application of Data Fitting Method in Combinatorics, arXiv preprint arXiv:1612.05526 [math.NT], 2016-2018.
- Wenwei Li, On the Number of Conjugate Classes of Derangements, arXiv:1612.08186 [math.CO], 2016.
- J. L. Nicolas and A. Sárközy, On partitions without small parts, Journal de théorie des nombres de Bordeaux, 12 no. 1 (2000), p. 227-254.
- R. A. Proctor, Let's Expand Rota's Twelvefold Way for Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- H. P. Robinson, Letter to N. J. A. Sloane, Jul 12 1971
- H. P. Robinson, Letter to N. J. A. Sloane, Dec 10 1973
- H. P. Robinson, Letter to N. J. A. Sloane, Jan 4 1974.
- Noah Rubin, Curtis Bright, Kevin K. H. Cheung, and Brett Stevens, Integer and Constraint Programming Revisited for Mutually Orthogonal Latin Squares, arXiv:2103.11018 [cs.DM], 2021.
- Miloslav Znojil, Non-Hermitian N-state degeneracies: unitary realizations via antisymmetric anharmonicities, arXiv:2010.15014 [quant-ph], 2020.
- Miloslav Znojil, Quantum phase transitions mediated by clustered non-Hermitian degeneracies, arXiv:2102.12272 [quant-ph], 2021.
- Miloslav Znojil, Bose-Einstein condensation processes with nontrivial geometric multiplicites realized via PT-symmetric and exactly solvable linear-Bose-Hubbard building blocks, arXiv:2108.07110 [quant-ph], 2021.
- Index entries for related partition-counting sequences
Crossrefs
Pairwise sums seem to be in A027336.
Essentially the same as A085811.
2-regular not necessarily connected graphs: A008483 (simple graphs), A000041 (multigraphs with loops allowed), this sequence (multigraphs with loops forbidden), A027336 (graphs with loops allowed but no multiple edges). - Jason Kimberley, Jan 05 2011
See also A098743 (parts that do not divide n).
Numbers n such that in the edge-delete game on the path P_{n} the first player does not have a winning strategy: A274161. - Lyndsey Wong, Jul 09 2016
Row sums of characteristic array A145573.
Programs
-
GAP
Concatenation([1],List([1..41],n->NrPartitions(n)-NrPartitions(n-1))); # Muniru A Asiru, Aug 20 2018
-
Magma
A41 := func
; [A41(n)-A41(n-1):n in [0..50]]; // Jason Kimberley, Jan 05 2011 -
Maple
with(combstruct): ZL1:=[S, {S=Set(Cycle(Z,card>1))}, unlabeled]: seq(count(ZL1,size=n), n=0..50); # Zerinvary Lajos, Sep 24 2007 G:= {P=Set (Set (Atom, card>1))}: combstruct[gfsolve](G, unlabeled, x): seq (combstruct[count] ([P, G, unlabeled], size=i), i=0..50); # Zerinvary Lajos, Dec 16 2007 with(combstruct):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, card>=m))}, unlabeled]; end: A:=a(2):seq(count(A, size=n), n=0..50); # Zerinvary Lajos, Jun 11 2008 # alternative Maple program: A002865:= proc(n) option remember; `if`(n=0, 1, add( (numtheory[sigma](j)-1)*A002865(n-j), j=1..n)/n) end: seq(A002865(n), n=0..60); # Alois P. Heinz, Sep 17 2017
-
Mathematica
Table[ PartitionsP[n + 1] - PartitionsP[n], {n, -1, 50}] (* Robert G. Wilson v, Jul 24 2004 *) f[1, 1] = 1; f[n_, k_] := f[n, k] = If[n < 0, 0, If[k > n, 0, If[k == n, 1, f[n, k + 1] + f[n - k, k]]]]; Table[ f[n, 2], {n, 50}] (* Robert G. Wilson v *) Table[SeriesCoefficient[Exp[Sum[x^(2*k)/(k*(1 - x^k)), {k, 1, n}]], {x, 0, n}], {n, 0, 50}] (* Vaclav Kotesovec, Aug 18 2018 *) CoefficientList[Series[1/QPochhammer[x^2, x], {x,0,50}], x] (* G. C. Greubel, Nov 03 2019 *) Table[Count[IntegerPartitions[n],?(FreeQ[#,1]&)],{n,0,50}] (* _Harvey P. Dale, Feb 12 2023 *)
-
PARI
{a(n) = if( n<0, 0, polcoeff( (1 - x) / eta(x + x * O(x^n)), n))};
-
PARI
a(n)=if(n,numbpart(n)-numbpart(n-1),1) \\ Charles R Greathouse IV, Nov 26 2012
-
Python
from sympy import npartitions def A002865(n): return npartitions(n)-npartitions(n-1) if n else 1 # Chai Wah Wu, Mar 30 2023
-
SageMath
def A002865_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 1/product((1-x^(m+2)) for m in (0..60)) ).list() A002865_list(50) # G. C. Greubel, Nov 03 2019
Formula
G.f.: Product_{m>1} 1/(1-x^m).
a(0)=1, a(n) = p(n) - p(n-1), n >= 1, with the partition numbers p(n) := A000041(n).
a(n) = Sum_{k=2..floor((n+2)/2)} A008284(n-k+1,k-1) for n > 0. - Reinhard Zumkeller, Nov 04 2007
G.f.: 1 + Sum_{n>=2} x^n / Product_{k>=n} (1 - x^k). - Joerg Arndt, Apr 13 2011
G.f.: Sum_{n>=0} x^(2*n) / Product_{k=1..n} (1 - x^k). - Joerg Arndt, Apr 17 2011
a(n) = A090824(n,1) for n > 0. - Reinhard Zumkeller, Oct 10 2012
a(n) ~ Pi * exp(sqrt(2*n/3)*Pi) / (12*sqrt(2)*n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + 13*Pi/(24*sqrt(6)))/sqrt(n) + (217*Pi^2/6912 + 9/(2*Pi^2) + 13/8)/n). - Vaclav Kotesovec, Feb 26 2015, extended Nov 04 2016
G.f.: exp(Sum_{k>=1} (sigma_1(k) - 1)*x^k/k). - Ilya Gutkovskiy, Aug 21 2018
a(0) = 1, a(n) = A232697(n) - 1. - George Beck, May 09 2019
From Peter Bala, Feb 19 2021: (Start)
G.f.: A(q) = Sum_{n >= 0} q^(n^2)/( (1 - q)*Product_{k = 2..n} (1 - q^k)^2 ).
More generally, A(q) = Sum_{n >= 0} q^(n*(n+r))/( (1 - q) * Product_{k = 2..n} (1 - q^k)^2 * Product_{i = 1..r} (1 - q^(n+i)) ) for r = 0,1,2,.... (End)
G.f.: 1 + Sum_{n >= 1} x^(n+1)/Product_{k = 1..n-1} 1 - x^(k+2). - Peter Bala, Dec 01 2024
Comments