A002896 Number of 2n-step polygons on cubic lattice.
1, 6, 90, 1860, 44730, 1172556, 32496156, 936369720, 27770358330, 842090474940, 25989269017140, 813689707488840, 25780447171287900, 825043888527957000, 26630804377937061000, 865978374333905289360, 28342398385058078078010, 932905175625150142902300
Offset: 0
Examples
1 + 6*x + 90*x^2 + 1860*x^3 + 44730*x^4 + 1172556*x^5 + 32496156*x^6 + ...
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..645
- David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008.
- Nikolai Beluhov, Powers of 2 in Balanced Grid Colourings, arXiv:2504.21451 [math.CO], 2025.
- C. Domb, On the theory of cooperative phenomena in crystals, Advances in Phys., 9 (1960), 149-361.
- Nachum Dershowitz, Touchard's Drunkard, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5.
- Robert Dougherty-Bliss, Christoph Koutschan, Natalya Ter-Saakov, and Doron Zeilberger, The (Symbolic and Numeric) Computational Challenges of Counting 0-1 Balanced Matrices, arXiv:2410.07435 [math.CO], 2024. See p. 5.
- Li Gan, On the algebraic area of cubic lattice walks, arXiv:2307.08732 [math-ph], 2023.
- S. Hassani, J.-M. Maillard, and N. Zenine, On the diagonals of rational functions: the minimal number of variables (unabridged version), arXiv:2502.05543 [math-ph], 2025. See p. 23.
- W. K. Hayman, A Generalisation of Stirling's Formula, Journal für die reine und angewandte Mathematik, (1956), vol. 196, pp. 67-95.
- John A. Hendrickson, Jr., On the enumeration of rectangular (0,1)-matrices, Journal of Statistical Computation and Simulation, 51 (1995), 291-313.
- Heng Huat Chan, Yoshio Tanigawa, Yifan Yang, and Wadim Zudilin, New analogues of Clausen's identities arising from the theory of modular forms, Advances in Mathematics, 228:2 (2011), pp. 1294-1314; doi:10.1016/j.aim.2011.06.011.
- G. S. Joyce, The simple cubic lattice Green function, Phil. Trans. Roy. Soc., 273 (1972), 583-610.
- Kiran S. Kedlaya and Andrew V. Sutherland, Hyperelliptic curves, L-polynomials and random matrices, arXiv:0803.4462 [math.NT], 2008-2010.
- Yen Lee Loh, A general method for calculating lattice Green functions on the branch cut, arXiv:1706.03083 [math-ph], 2017.
- Nobu C. Shirai and Naoyuki Sakumichi, Universal Negative Energetic Elasticity in Polymer Chains: Crossovers among Random, Self-Avoiding, and Neighbor-Avoiding Walks, arXiv:2408.14992 [cond-mat.soft], 2024. See p. 5.
- Chunwei Song and Bowen Yao, On Combinatorial Rectangles with Minimum oo-Discrepancy, arXiv:1909.05648 [math.CO], 2019. See p. 7 for another interpretation.
- Ralph A. Raimi and Jet Wimp, Review of book "A=B" by M. Petkovsek et al., Mathematical Intelligencer, 23 (No. 4, 2001), pp. 72-77.
Crossrefs
Programs
-
Maple
a := proc(n) local k; binomial(2*n,n)*add(binomial(n,k)^2 *binomial(2*k,k), k=0..n); end; # second Maple program a:= proc(n) option remember; `if`(n<2, 5*n+1, (2*(2*n-1)*(10*n^2-10*n+3) *a(n-1) -36*(n-1)*(2*n-1)*(2*n-3) *a(n-2)) /n^3) end: seq(a(n), n=0..20); # Alois P. Heinz, Nov 02 2012 A002896 := n -> binomial(2*n,n)*hypergeom([1/2, -n, -n], [1, 1], 4): seq(simplify(A002896(n)), n=0..16); # Peter Luschny, May 23 2017
-
Mathematica
Table[Binomial[2n,n] Sum[Binomial[n,k]^2 Binomial[2k,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jan 24 2012 *) a[ n_] := If[ n < 0, 0, HypergeometricPFQ[ {-n, -n, 1/2}, {1, 1}, 4] Binomial[ 2 n, n]] (* Michael Somos, May 21 2013 *)
-
PARI
a(n)=binomial(2*n,n)*sum(k=0,n,binomial(n, k)^2*binomial(2*k, k)) \\ Charles R Greathouse IV, Oct 31 2011
-
Sage
def A002896(): x, y, n = 1, 6, 1 while True: yield x n += 1 x, y = y, ((4*n-2)*((10*(n-1)*n+3)*y-18*(n-1)*(2*n-3)*x))//n^3 a = A002896() [next(a) for i in range(17)] # Peter Luschny, Oct 09 2013
Formula
a(n) = C(2*n, n)*Sum_{k=0..n} C(n, k)^2*C(2*k, k).
a(n) = (4^n*p(1/2, n)/n!)*hypergeom([-n, -n, 1/2], [1, 1], 4), where p(a, k) = Product_{i=0..k-1} (a+i).
E.g.f.: Sum_{n>=0} a(n)*x^(2*n)/(2*n)! = BesselI(0, 2*x)^3. - Corrected by Christopher J. Smyth, Oct 29 2012
D-finite with recurrence: n^3*a(n) = 2*(2*n-1)*(10*n^2-10*n+3)*a(n-1) - 36*(n-1)*(2*n-1)*(2*n-3)*a(n-2). - Vladeta Jovovic, Jul 16 2004
An asymptotic formula follows immediately from an observation of Bruce Richmond and me in SIAM Review - 31 (1989, 122-125). We use Hayman's method to find the asymptotic behavior of the sum of squares of the multinomial coefficients multi(n, k_1, k_2, ..., k_m) with m fixed. From this one gets a_n ~ (3/4)*sqrt(3)*6^(2*n)/(Pi*n)^(3/2). - Cecil C Rousseau (ccrousse(AT)memphis.edu), Mar 14 2006
G.f.: (1/sqrt(1+12*z)) * hypergeom([1/8,3/8],[1],64/81*z*(1+sqrt(1-36*z))^2*(2+sqrt(1-36*z))^4/(1+12*z)^4) * hypergeom([1/8, 3/8],[1],64/81*z*(1-sqrt(1-36*z))^2*(2-sqrt(1-36*z))^4/(1+12*z)^4). - Sergey Perepechko, Jan 26 2011
a(n) = binomial(2*n,n)*A002893(n). - Mark van Hoeij, Oct 29 2011
G.f.: (1/2)*(10-72*x-6*(144*x^2-40*x+1)^(1/2))^(1/2)*hypergeom([1/6, 1/3],[1],54*x*(108*x^2-27*x+1+(9*x-1)*(144*x^2-40*x+1)^(1/2)))^2. - Mark van Hoeij, Nov 12 2011
PSUM transform is A174516. - Michael Somos, May 21 2013
0 = (-x^2+40*x^3-144*x^4)*y''' + (-3*x+180*x^2-864*x^3)*y'' + (-1+132*x-972*x^2)*y' + (6-108*x)*y, where y is the g.f. - Gheorghe Coserea, Jul 14 2016
a(n) = [(x y z)^0] (x + 1/x + y + 1/y + z + 1/z)^(2*n). - Christopher J. Smyth, Sep 25 2018
a(n) = (1/Pi)^3*Integral_{0 <= x, y, z <= Pi} (2*cos(x) + 2*cos(y) + 2*cos(z))^(2*n) dx dy dz. - Peter Bala, Feb 10 2022
a(n) = Sum_{i+j+k=n, 0<=i,j,k<=n} multinomial(2n [i,i,j,j,k,k]). - Shel Kaphan, Jan 16 2023
Sum_{k>=0} a(k)/36^k = A086231 = (sqrt(3)-1) * (Gamma(1/24) * Gamma(11/24))^2 / (32*Pi^3). - Vaclav Kotesovec, Apr 23 2023
G.f.: HeunG(1/9,1/12,1/4,3/4,1,1/2,4*x)^2 (see Hassani et al.). - Stefano Spezia, Feb 16 2025
Comments