A000816
E.g.f.: Sum_{n >= 0} a(n) * x^(2*n) / (2*n)! = sin(x)^2 / cos(2*x).
Original entry on oeis.org
0, 2, 40, 1952, 177280, 25866752, 5535262720, 1633165156352, 635421069967360, 315212388819402752, 194181169538675507200, 145435130631317935357952, 130145345400688287667978240, 137139396592145493713802493952
Offset: 0
-
Union[ Range[0, 26]! CoefficientList[ Series[ Sin[x]^2/Cos[ 2x], {x, 0, 26}], x]] (* Robert G. Wilson v, Apr 16 2011 *)
Table[(-1)^(n + 1) 2^(2 n) I PolyLog[-2 n, I], {n, 1, 13}] (* Artur Jasinski, Mar 21 2022 *)
With[{nn=30},Take[CoefficientList[Series[Sin[x]^2/Cos[2x],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Oct 18 2024 *)
-
{a(n) = local(m); if( n<0, 0, m = 2*n; m! * polcoeff( 1 / (2 - 1 / cos(x + x * O(x^m))^2) - 1, m))} /* Michael Somos, Apr 16 2011 */
-
@CachedFunction
def sp(n,x) :
if n == 0 : return 1
return -add(2^(n-k)*sp(k,1/2)*binomial(n,k) for k in range(n)[::2])
def A000816(n) : return 0 if n == 0 else abs(sp(2*n,x)/2)
[A000816(n) for n in (0..13)] # Peter Luschny, Jul 30 2012
A354065
Product_{n>=1} 1 / (1 - x^n)^(a(n)/n!) = 1 + tan(x).
Original entry on oeis.org
1, -2, 2, -8, 56, -496, 3184, -22784, 273920, -4539136, 48104704, -506000384, 10591523840, -204528633856, 2888557717504, -53417657237504, 1249919350046720, -28453501844586496, 624022403933077504, -13729309300086800384, 372737701735949926400, -11010228423219933085696
Offset: 1
Cf.
A000182,
A003707,
A009006,
A353583,
A353584,
A353611,
A353911,
A354055,
A354056,
A354063,
A354064,
A354066.
-
nmax = 22; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 + Tan[x^k]]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
A024299
a(n) = (2*n)! [x^(2*n)] log(1 + tanh(x)^2)/2.
Original entry on oeis.org
0, 1, -14, 496, -34544, 4055296, -724212224, 183218384896, -62380415842304, 27507260369207296, -15250924309151350784, 10384039093607251050496, -8517991922318587187953664, 8285309769460200661892202496, -9429010285390912531529354706944
Offset: 0
-
L:=RiemannZeta();
[0] cat [-Round(2^(2*n-1)*(4^n-2)*(4^n-1)*Evaluate(L, 1-2*n)): n in [1..15]]; // G. C. Greubel, Jul 12 2022
-
a := n -> `if`(n=0, 0, -2^(2*n-1)*(4^n-2)*(4^n-1)*Zeta(1-2*n)):
seq(a(n), n=0..14); # Peter Luschny, Oct 29 2020
-
With[{nn=30},Take[CoefficientList[Series[Log[1+Tanh[x]^2]/2,{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Dec 12 2021 *)
-
my(x='x+O('x^30), v = concat([0,0], Vec(serlaplace (log(1+tanh(x)^2)/2)))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Oct 29 2020
-
[0]+[-2^(2*n-1)*(4^n-2)*(4^n-1)*zeta(1-2*n) for n in (1..15)] # G. C. Greubel, Jul 12 2022
Extended with signs, Mar 1997
A093049
n-1 minus exponent of 2 in n, a(0) = 0.
Original entry on oeis.org
0, 0, 0, 2, 1, 4, 4, 6, 4, 8, 8, 10, 9, 12, 12, 14, 11, 16, 16, 18, 17, 20, 20, 22, 20, 24, 24, 26, 25, 28, 28, 30, 26, 32, 32, 34, 33, 36, 36, 38, 36, 40, 40, 42, 41, 44, 44, 46, 43, 48, 48, 50, 49, 52, 52, 54, 52, 56, 56, 58, 57, 60, 60, 62, 57, 64, 64, 66, 65, 68
Offset: 0
G.f. = 2*x^3 + x^4 + 4*x^5 + 4*x^6 + 6*x^7 + 4*x^8 + 8*x^9 + 8*x^10 + ... - _Michael Somos_, Jan 25 2020
-
a[ n_] := If[ n == 0, 0, n - 1 - IntegerExponent[n, 2]]; (* Michael Somos, Jan 25 2020 *)
-
a(n)=if(n<1,0,if(n%2==0,a(n/2)+n/2-1,n-1))
-
{a(n) = if( n, n - 1 - valuation(n, 2))}; /* Michael Somos, Jan 25 2020 */
-
def A093049(n): return n-1-(~n& n-1).bit_length() if n else 0 # Chai Wah Wu, Jul 07 2022
A274805
The logarithmic transform of sigma(n).
Original entry on oeis.org
1, 2, -3, -6, 45, 11, -1372, 4298, 59244, -573463, -2432023, 75984243, -136498141, -10881169822, 100704750342, 1514280063802, -36086469752977, -102642110690866, 11883894518252419, -77863424962770751, -3705485804176583500, 71306510264347489177
Offset: 1
Some a(n) formulas, see A127671:
a(0) = undefined
a(1) = 1*x(1)
a(2) = 1*x(2) - x(1)^2
a(3) = 1*x(3) - 3*x(1)*x(2) + 2*x(1)^3
a(4) = 1*x(4) - 4*x(1)*x(3) - 3*x(2)^2 + 12*x(1)^2*x(2) - 6*x(1)^4
a(5) = 1*x(5) - 5*x(1)*x(4) - 10*x(2)*x(3) + 20*x(1)^2*x(3) + 30*x(1)*x(2)^2 - 60*x(1)^3*x(2) + 24*x(1)^5
- Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.
- Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.
- Alois P. Heinz, Table of n, a(n) for n = 1..451
- M. Bernstein and N. J. A. Sloane, Some Canonical Sequences of Integers, Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms.
- Eric W. Weisstein MathWorld, Logarithmic Transform.
Cf.
A112005,
A007553,
A062740,
A007447,
A062738,
A033464,
A116652,
A002031,
A003704,
A003707,
A155585,
A000142,
A226968.
-
nmax:=22: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; b(n) - add(k*binomial(n, k)*b(n-k)*a(k), k=1..n-1)/n: end: seq(a(n), n=1..nmax); # End first LOG program.
nmax:=22: with(numtheory): b := proc(n): sigma(n) end: t1 := log(1 + add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=1..nmax); # End second LOG program.
nmax:=22: with(numtheory): b := proc(n): sigma(n) end: f := series(exp(add(r(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(1):=b(1): r(1):= b(1): for n from 2 to nmax+1 do r(n) := solve(d(n)-b(n), r(n)): a(n):=r(n): od: seq(a(n), n=1..nmax); # End third LOG program.
-
a[1] = 1; a[n_] := a[n] = DivisorSigma[1, n] - Sum[k*Binomial[n, k] * DivisorSigma[1, n-k]*a[k], {k, 1, n-1}]/n; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Feb 27 2017 *)
-
N=33; x='x+O('x^N); Vec(serlaplace(log(1+sum(n=1,N,sigma(n)*x^n/n!)))) \\ Joerg Arndt, Feb 27 2017
A331610
Expansion of e.g.f.: exp(1 / (1 - tan(x)) - 1).
Original entry on oeis.org
1, 1, 3, 15, 97, 777, 7379, 80983, 1007137, 13986289, 214383171, 3593224767, 65347120705, 1281151315641, 26928292883795, 603928982033863, 14392387319349697, 363135896514611041, 9669298448057196291, 270932711729869233903, 7967970654277850949025
Offset: 0
-
S:= series(exp(1/(1-tan(x))-1), x, 31):
seq(coeff(S,x,i)*i!, i=0..30); # Robert Israel, Dec 10 2024
-
nmax = 20; CoefficientList[Series[Exp[1/(1 - Tan[x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
A000111[n_] := If[EvenQ[n], Abs[EulerE[n]], Abs[(2^(n + 1) (2^(n + 1) - 1) BernoulliB[n + 1])/(n + 1)]]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] 2^(k - 1) A000111[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
A296837
Expansion of e.g.f. log(1 + x*tan(x/2)) (even powers only).
Original entry on oeis.org
0, 1, -2, 18, -312, 9470, -436860, 28616322, -2522596496, 288046961190, -41355026494020, 7291524732108650, -1548849359704927896, 390122366308850972238, -114968364853645904762252, 39189956630839558368115410, -15300235972710835734174638880
Offset: 0
log(1 + x*tan(x/2)) = x^2/2! - 2*x^4/4! + 18*x^6/6! - 312*x^8/8! + ...
-
nmax = 16; Table[(CoefficientList[Series[Log[1 + x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
A296838
Expansion of e.g.f. log(1 + x*tanh(x/2)) (even powers only).
Original entry on oeis.org
0, 1, -4, 48, -1186, 50060, -3226206, 294835184, -36270477034, 5779302944436, -1157856177719830, 284876691727454552, -84442374415240892898, 29680054107768128647388, -12205478262363331593956686, 5805823539844285054558025280, -3163004294186696659107788567386
Offset: 0
log(1 + x*tanh(x/2)) = x^2/2! - 4*x^4/4! + 48*x^6/6! - 1186*x^8/8! + ...
-
nmax = 16; Table[(CoefficientList[Series[Log[1 + x Tanh[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
A331978
E.g.f.: -log(2 - cosh(x)) (even powers only).
Original entry on oeis.org
0, 1, 4, 46, 1114, 46246, 2933074, 263817646, 31943268634, 5009616448246, 987840438629794, 239217148602642046, 69790939492563608554, 24143849395162438623046, 9772368696995766705116914, 4575221153658910691872135246, 2453303387149157947685779986874
Offset: 0
-
ptan := proc(n) option remember;
if irem(n, 2) = 0 then 0 else
add(`if`(k=0, 1, binomial(n, k)*ptan(n - k)), k = 0..n-1, 2) fi end:
A331978 := n -> ptan(2*n - 1):
seq(A331978(n), n = 0..16); # Peter Luschny, Jun 06 2022
-
nmax = 16; Table[(CoefficientList[Series[-Log[2 - Cosh[x]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
A107729
Triangle T(n,k), 0 <= k <= n, read by rows, defined by T(0,0) = 1; T(0,k) = 0 if k < 0 or if k > 0; T(n,k) = k*T(n-1,k-1) + (k+2)*T(n-1,k+1).
Original entry on oeis.org
1, 0, 1, 2, 0, 2, 0, 8, 0, 6, 16, 0, 40, 0, 24, 0, 136, 0, 240, 0, 120, 272, 0, 1232, 0, 1680, 0, 720, 0, 3968, 0, 12096, 0, 13440, 0, 5040, 7936, 0, 56320, 0, 129024, 0, 120960, 0, 40320, 0, 176896, 0, 814080, 0, 1491840, 0, 1209600, 0, 362880, 353792, 0
Offset: 0
Triangle begins:
1;
0, 1;
2, 0, 2;
0, 8, 0, 6;
16, 0, 40, 0, 24;
0, 136, 0, 240, 0, 120;
272, 0, 1232, 0, 1680, 0, 720;
0, 3968, 0, 12096, 0, 13440, 0, 5040;
7936, 0, 56320, 0, 129024, 0, 120960, 0, 40320;
0, 176896, 0, 814080, 0, 1491840, 0, 1209600, 0, 362880;
353792, 0, 3610112, 0, 12207360, 0, 18627840, 0, 13305660, 0, 3628800;
...
- S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 446.
-
T:=proc(n,k) if k=-1 then 0 elif n=1 and k=1 then 1 elif k>n then 0 else (k-1)*T(n-1,k-1)+(k+1)*T(n-1,k+1) fi end: for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form [Produces triangle with a different offset] # Emeric Deutsch, Jun 13 2005
Showing 1-10 of 10 results.
Comments