A004253 a(n) = 5*a(n-1) - a(n-2), with a(1)=1, a(2)=4.
1, 4, 19, 91, 436, 2089, 10009, 47956, 229771, 1100899, 5274724, 25272721, 121088881, 580171684, 2779769539, 13318676011, 63813610516, 305749376569, 1464933272329, 7018916985076, 33629651653051, 161129341280179, 772017054747844, 3698955932459041, 17722762607547361
Offset: 1
References
- Titu Andreescu and Rǎzvan Gelca, Putnam and Beyond, New York, Springer, 2007, problem 311, pp. 104 and 466-467 (proposed for the USA Mathematical Olympiad by G. Heuer).
- F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
- F. A. Haight, On a generalization of Pythagoras' theorem, pp. 73-77 of J. C. Butcher, editor, A Spectrum of Mathematics. Auckland University Press, 1971.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..200
- F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
- F. Faase, Counting Hamiltonian cycles in product graphs
- F. Faase, Results from the counting program
- Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.
- Frank A. Haight, Letter to N. J. A. Sloane, Sep 06 1976
- Frank A. Haight, On a generalization of Pythagoras' theorem, pp. 73-77 of J. C. Butcher, editor, A Spectrum of Mathematics. Auckland University Press, 1971. [Annotated scanned copy]
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 422
- Tanya Khovanova, Recursive Sequences
- Lisa Lokteva, Constructing Rational Homology 3-Spheres That Bound Rational Homology 4-Balls, arXiv:2208.14850 [math.GT], 2022.
- Per Hakan Lundow, Computation of matching polynomials and the number of 1-factors in polygraphs, Research report, No 12, 1996, Department of Math., Umea University, Sweden.
- Per Hakan Lundow, Enumeration of matchings in polygraphs, 1998.
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962, 2014
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- John Riordan, Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences. Note that the sequences are identified by their N-numbers, not their A-numbers.
- James A. Sellers, Domino Tilings and Products of Fibonacci and Pell Numbers, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.2
- F. M. van Lamoen, Square wreaths around hexagons, Forum Geometricorum, 6 (2006) 311-325.
- Index entries for sequences related to dominoes
- Index entries for linear recurrences with constant coefficients, signature (5,-1).
Crossrefs
Programs
-
GAP
a:=[1,4];; for n in [3..30] do a[n]:=5*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Oct 23 2019
-
Magma
[ n eq 1 select 1 else n eq 2 select 4 else 5*Self(n-1)-Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Aug 19 2011
-
Maple
a[0]:=1: a[1]:=1: for n from 2 to 26 do a[n]:=5*a[n-1]-a[n-2] od: seq(a[n], n=1..22); # Zerinvary Lajos, Jul 26 2006
-
Mathematica
LinearRecurrence[{5, -1}, {1, 4}, 22] (* Jean-François Alcover, Sep 27 2017 *)
-
PARI
Vec((1-x)/(1-5*x+x^2)+O(x^30)) \\ Charles R Greathouse IV, Jul 01 2013
-
Sage
[lucas_number1(n,5,1)-lucas_number1(n-1,5,1) for n in range(1, 23)] # Zerinvary Lajos, Nov 10 2009
Formula
G.f.: x*(1 - x) / (1 - 5*x + x^2). Simon Plouffe in his 1992 dissertation.[offset 0]
a(n) ~ (1/2 + 1/14*sqrt(21))*(1/2*(5 + sqrt(21)))^n. - Joe Keane (jgk(AT)jgk.org), May 16 2002[offset 0]
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i), then q(n, 3)=a(n). - Benoit Cloitre, Nov 10 2002 [offset 0]
For n>0, a(n)*a(n+3) = 15 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004
a(n) = Sum_{k=0..n} binomial(n+k, 2k)*3^k. - Paul Barry, Jul 26 2004[offset 0]
a(n) = (-1)^n*U(2n, i*sqrt(3)/2), U(n, x) Chebyshev polynomial of second kind, i=sqrt(-1). - Paul Barry, Mar 13 2005[offset 0]
[a(n), A004254(n)] = the 2 X 2 matrix [1,3; 1,4]^n * [1,0]. - Gary W. Adamson, Mar 19 2008
a(n) = ((sqrt(21)-3)*((5+sqrt(21))/2)^n + (sqrt(21)+3)*((5-sqrt(21))/2)^n)/2/sqrt(21). - Seiichi Kirikami, Sep 06 2011
a(n) = S(n-1, 5) - S(n-2, 5) = (-1)^n*S(2*n, i*sqrt(3)), n >= 1, with the Chebyshev S polynomials (A049310), and S(n-1, 5) = A004254(n), for n >= 0. See a Paul Barry formula (offset corrected). - Wolfdieter Lang, Oct 15 2020
From Peter Bala, Feb 10 2024: (Start)
a(n) = a(1-n).
For n, j, k in Z, a(n)*a(n+j+k) - a(n+j)*a(n+k) = 3*A004254(j)*A004254(k). The case j = 1, k = 2 is given above.
a(n)^2 + a(n+1)^2 - 5*a(n)*a(n+1) = - 3.
More generally, a(n)^2 + a(n+k)^2 - (A004254(k+1) - A004254(k-1))*a(n)*a(n+k) = -3*A004254(k)^2. (End)
Sum_{n >= 2} 1/(a(n) - 1/a(n)) = 1/3 (telescoping series: for n >= 2, 3/(a(n) - 1/a(n)) = 1/A004254(n-1) - 1/A004254(n)). - Peter Bala, May 21 2025
E.g.f.: exp(5*x/2)*(7*cosh(sqrt(21)*x/2) - sqrt(21)*sinh(sqrt(21)*x/2))/7 - 1. - Stefano Spezia, Jul 02 2025
Extensions
Additional comments from James Sellers and N. J. A. Sloane, May 03 2002
More terms from Ray Chandler, Nov 17 2003
Comments