A350700 a(n) is the number of 1's minus the number of 0's in A004685(n).
-1, 1, 1, 0, 2, 1, -2, 2, 1, -2, 4, 1, -4, 2, 3, -2, 6, 3, -4, -3, 3, -2, 1, 7, -4, -5, 1, 4, 3, 5, -4, 1, -4, 4, 1, -2, 0, 3, -6, -2, 5, 6, 0, 3, 6, -1, 11, -6, -9, 3, 2, -1, -1, -2, -5, 6, 4, -7, 8, 0, -9, -4, 10, 3, -4, 6, -7, 6, -17, -1, -2, -5, 1, 4, -3
Offset: 0
Examples
A004685(0) = 0; this term has 0 ones and 1 zero. So a(0) = 0 - 1 = -1. A004685(7) = 1101; this term has 3 ones and 1 zero. So a(7) = 3 - 1 = 2.
Links
- Karl-Heinz Hofmann, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
a[n_] := Subtract @@ DigitCount[Fibonacci[n], 2, {1, 0}]; Array[a, 75, 0] (* Amiram Eldar, Jan 22 2022 *)
-
Python
from sympy import fibonacci print([(bin(fibonacci(n))[2:].count("1") - bin(fibonacci(n))[2:].count("0")) for n in range (0,100)])
Formula
a(n) = 0 if and only if n is in A214852. - Amiram Eldar, Jan 22 2022
Comments