A005668 Denominators of continued fraction convergents to sqrt(10).
0, 1, 6, 37, 228, 1405, 8658, 53353, 328776, 2026009, 12484830, 76934989, 474094764, 2921503573, 18003116202, 110940200785, 683644320912, 4212806126257, 25960481078454, 159975692596981, 985814636660340, 6074863512559021, 37434995712014466, 230684837784645817
Offset: 0
Examples
G.f. = x + 6*x^2 + 37*x^3 + 228*x^4 + 1405*x^5 + 8658*x^6 + 53353*x^7 + ...
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, Example 8.
- E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242, Thm. 1, p. 233.
- Sergio Falcón and Ángel Plaza, On the Fibonacci k-numbers, Chaos, Solitons & Fractals 2007; 32(5): 1615-24.
- Sergio Falcón and Ángel Plaza, The k-Fibonacci sequence and the Pascal 2-triangle Chaos, Solitons & Fractals 2007; 33(1): 38-49.
- R. K. Guy, Letter to N. J. A. Sloane, 1987
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 427
- Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Tanya Khovanova, Recursive Sequences
- Pablo Lam-Estrada, Myriam Rosalía Maldonado-Ramírez, José Luis López-Bonilla, and Fausto Jarquín-Zárate, The sequences of Fibonacci and Lucas for each real quadratic fields Q(Sqrt(d)), arXiv:1904.13002 [math.NT], 2019.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Kai Wang, On k-Fibonacci Sequences And Infinite Series List of Results and Examples, 2020.
- Index entries for linear recurrences with constant coefficients, signature (6,1).
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Programs
-
Magma
[n le 2 select n-1 else 6*Self(n-1)+Self(n-2): n in [1..25]]; // Vincenzo Librandi, Feb 23 2013
-
Maple
evalf(sqrt(10),200); convert(%,confrac,fractionlist); fractionlist; A005668:=-z/(-1+6*z+z**2); - Simon Plouffe in his 1992 dissertation. a := n -> `if`(n<2,n,6^(n-1)*hypergeom([1-n/2,(1-n)/2], [1-n], -1/9)): seq(simplify(a(n)), n=0..23); # Peter Luschny, Jun 28 2017
-
Mathematica
LinearRecurrence[{6,1}, {0,1}, 30] (* Vincenzo Librandi, Feb 23 2013 *) a[ n_] := (-I)^(n - 1) ChebyshevU[ n - 1, 3 I]; (* Michael Somos, May 28 2014 *) a[ n_] := MatrixPower[ {{0, 1}, {1, 6}}, n + 1][[1, 1]]; (* Michael Somos, May 28 2014 *) Fibonacci[Range[0,30],6] (* G. C. Greubel, Jun 06 2019 *) Join[{0},Convergents[Sqrt[10],30]//Denominator] (* Harvey P. Dale, Dec 28 2022 *)
-
PARI
{a(n) = ([0, 1; 1, 6]^(n+1)) [1, 1]}; /* Michael Somos, May 28 2014 */
-
PARI
{a(n) = (-I)^(n-1) * polchebyshev( n-1, 2, 3*I)}; /* Michael Somos, May 28 2014 */
-
Sage
from sage.combinat.sloane_functions import recur_gen3; it = recur_gen3(0,1,6,6,1,0); [next(it) for i in range(1,22)] # Zerinvary Lajos, Jul 09 2008
-
Sage
[lucas_number1(n,6,-1) for n in range(0, 21)]# Zerinvary Lajos, Apr 24 2009
Formula
G.f.: x / (1 - 6*x - x^2).
a(n) = 6*a(n-1) + a(n-2).
a(n) = ((-i)^(n-1))*S(n-1, 3*i) with S(n, x) Chebyshev's polynomials of the second kind (see A049310) and i^2=-1.
a(n) = F(n, 6), the n-th Fibonacci polynomial evaluated at x=6. - T. D. Noe, Jan 19 2006
From Sergio Falcon, Sep 24 2007: (Start)
a(n) = ((3+sqrt(10))^n - (3-sqrt(10))^n)/(2*sqrt(10)).
a(n) = Sum_{i=0..floor((n-1)/2)} binomial(n-1-i,i)*6^(n-1-2*i). (End)
Sum_{n>=1}(-1)^(n-1)/(a(n)*a(n+1)) = sqrt(10) - 3. - Vladimir Shevelev, Feb 23 2013
a(n) = [M^(n+1)]{0,0}, where M = [0,1; 1,6]. - _L. Edson Jeffery, Aug 28 2013
a(-n) = -(-1)^n * a(n). - Michael Somos, May 28 2014
a(n) = 6^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], -1/9) for n >= 2. - Peter Luschny, Jun 28 2017
G.f.: x/(1 - 6*x - x^2) = Sum_{n >= 0} x^(n+1) *( Product_{k = 1..n} (m*k + 6 - m + x)/(1 + m*k*x) ) for arbitrary m (a telescoping series). - Peter Bala, May 08 2024
Extensions
Chebyshev comments from Wolfdieter Lang, Jan 21 2003
Comments