A007290 a(n) = 2*binomial(n,3).
0, 0, 0, 2, 8, 20, 40, 70, 112, 168, 240, 330, 440, 572, 728, 910, 1120, 1360, 1632, 1938, 2280, 2660, 3080, 3542, 4048, 4600, 5200, 5850, 6552, 7308, 8120, 8990, 9920, 10912, 11968, 13090, 14280, 15540, 16872, 18278, 19760, 21320, 22960, 24682, 26488, 28380, 30360, 32430, 34592, 36848, 39200
Offset: 0
References
- Luigi Berzolari, Allgemeine Theorie der Höheren Ebenen Algebraischen Kurven, Encyclopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen. Band III_2. Heft 3, Leipzig: B. G. Teubner, 1906, p. 352.
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 259.
- Maurice Protat, Des Olympiades à l'Agrégation, un problème de maximum, Problème 36, p. 83, Ellipses, Paris 1997.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Alexandru T. Balaban, Denise Mills, Ovidiu Ivanciuc and Subhash C. Basak,, Reverse Wiener indices, Croatica Chemica Acta, Vol. 73, No. 4 (2000), pp. 923-941.
- A. Burstein, S. Kitaev and T. Mansour, Partially ordered patterns and their combinatorial interpretations, PU. M. A. Vol. 19, No. 2-3 (2008), pp. 27-38.
- Otto Haxel, J. Hans D. Jensen and Hans E. Suess, On the "Magic Numbers" in Nuclear Structure, Phys. Rev., Vol. 75 (1949), p. 1766.
- Xiangdong Ji, Chapter 8: Structure of Finite Nuclei, Lecture notes for Phys 741 at Univ. of Maryland, p. 140 [From _Tom Copeland_, Apr 07 2014].
- Sandi Klavžar, Balázs Patkós, Gregor Rus and Ismael G. Yero, On general position sets in Cartesian grids, arXiv:1907.04535 [math.CO], 2019.
- Vladimir Ladma, Magic Numbers.
- Cleve Moler, LINPACK subroutine sgefa.f, University of New Mexico, Argonne National Lab, 1978.
- Hamzeh Mujahed and Benedek Nagy, Wiener Index on Lines of Unit Cells of the Body-Centered Cubic Grid, Mathematical Morphology and Its Applications to Signal and Image Processing, 12th International Symposium, ISMM 2015.
- V. B. Priezzhev, Series expansion for rectilinear polymers on the square lattice, J. Phys. A, Vol. 12, No. 11 (1979), pp. 2131-2139.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- Wikipedia, p-derivation.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Haskell
a007290 n = if n < 3 then 0 else 2 * a007318 n 3 -- Reinhard Zumkeller, Nov 18 2012
-
Magma
I:=[0, 0, 0, 2]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi, Jun 19 2012
-
Maple
A007290 := proc(n) 2*binomial(n,3) end proc:
-
Mathematica
Table[Integrate[ D[ChebyshevU[n, x], x] D[ChebyshevU[n, x], x] (1 - x^2)^(1/2), {x, -1, 1}]/Pi, {n, 1, 20}] (* Pacher *) LinearRecurrence[{4,-6,4,-1},{0,0,0,2},50] (* Vincenzo Librandi, Jun 19 2012 *)
-
PARI
my(x='x+O('x^100)); concat([0, 0, 0], Vec(2*x^3/(1-x)^4)) \\ Altug Alkan, Nov 01 2015
-
PARI
apply( {A007290(n)=binomial(n,3)*2}, [0..55]) \\ M. F. Hasler, Jul 02 2021
Formula
G.f.: 2*x^3/(1-x)^4.
a(n) = a(n-1)*n/(n-3) = a(n-1) + A002378(n-2) = 2*A000292(n-2) = Sum_{i=0..n-2} i*(i+1) = n*(n-1)*(n-2)/3. - Henry Bottomley, Jun 02 2000 [Formula corrected by R. J. Mathar, Dec 13 2010]
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 19 2012
a(n) = (2*n - 3*n^2 + n^3)/3. - T. D. Noe, May 20 2013
a(n+1) = A002412(n) - A000330(n) or "Hex Pyramidal" - "Square Pyramidal" (as can also be seen via above formula). - Richard R. Forberg, Aug 07 2013
Sum_{n>=3} 1/a(n) = 3/4. - Enrique Pérez Herrero, Nov 10 2013
E.g.f.: exp(x)*x^3/3. - Geoffrey Critzer, Nov 22 2015
a(n+2) = delta(-n) = -delta(n) for n >= 0, where delta is the p-derivation over the integers with respect to prime p = 3. - Danny Rorabaugh, Nov 10 2017
(a(n) + a(n+1))/2 = A000330(n-1). - Ezhilarasu Velayutham, Apr 05 2019
Sum_{n>=3} (-1)^(n+1)/a(n) = 6*log(2) - 15/4. - Amiram Eldar, Jan 09 2022
a(n) = Sum_{m=0..n-2} Sum_{k=0..n-2} abs(m-k). - Nicolas Bělohoubek, Nov 06 2022
From Bernard Schott, Jan 04 2023: (Start)
a(n) = 2 * A000292(n-2), for n >= 2.
a(n+1) = 2 *Sum_{k=1..floor(n/2)} (n-(2k-1))^2, for n >= 2. (End)
Comments