A007434 Jordan function J_2(n) (a generalization of phi(n)).
1, 3, 8, 12, 24, 24, 48, 48, 72, 72, 120, 96, 168, 144, 192, 192, 288, 216, 360, 288, 384, 360, 528, 384, 600, 504, 648, 576, 840, 576, 960, 768, 960, 864, 1152, 864, 1368, 1080, 1344, 1152, 1680, 1152, 1848, 1440, 1728, 1584, 2208, 1536
Offset: 1
Examples
a(4) = 12 because the divisors of 4 being 1, 2, 4, we find that phi(1)*phi(4/1)*(4/1) = 8, phi(2)*phi(4/2)*(4/2) = 2, phi(4)*phi(4/4)*(4/4) = 2 and 8 + 2 + 2 = 12. G.f. = x + 3*x^2 + 8*x^3 + 12*x^4 + 24*x^5 + 24*x^6 + 48*x^7 + 48*x^8 + 72*x^9 + ...
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
- A. Del Centina, Poncelet's porism: a long story of renewed discoveries, I, Hist. Exact Sci. (2016), v. 70, p. 106.
- L. E. Dickson (1919, repr. 1971). History of the Theory of Numbers I. Chelsea. p. 147.
- P. J. McCarthy, Introduction to Arithmetical Functions, Universitext, Springer, New York, NY, USA, 1986.
- G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Eight, Chap. 1, Section 6, Problem 64.
- M. Ram Murty (2001). Problems in Analytic Number Theory. Graduate Texts in Mathematics. 206. Springer-Verlag. p. 11.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Sukumar Das Adhikari and A. Sankaranarayanan, On an error term related to the Jordan totient function Jk(n), Journal of Number Theory Volume 34, Issue 2, February 1990, Pages 178-188.
- Dorin Andrica and Mihai Piticari, On Some Extensions Of Jordan's Arithmetic Functions, Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics - ICTAMI 2003, Alba Iulia.
- E. Artal Bartolo, P. D. González Pérez, M. González Villa, and E. León-Cardenal, On a suspension formula for Denef-Loeser zeta functions, arXiv:2502.05022 [math.AG], 2025. See p. 19.
- Theo Douvropoulos, Joel Brewster Lewis, and Alejandro H. Morales, Hurwitz numbers for reflection groups III: Uniform formulas, arXiv:2308.04751 [math.CO], 2023, see p. 32.
- F. A. Lewis and others, Problem 4002, Amer. Math. Monthly, Vol. 49, No. 9, Nov. 1942, pp. 618-619.
- H. Li and T. MacHenry, Permanents and Determinants, Weighted Isobaric Polynomials, and Integer Sequences, J. Int. Seq. 16 (2013) #13.3.5, example 38.
- MathOverflow, Averages of euler-phi function and similar.
- Carl-Fredrik Nyberg-Brodda, On congruence subgroups of SL_2(Z[1/p]) generated by two parabolic elements, arXiv:2312.11258 [math.GR], 2023.
- Nittiya Pabhapote and Vichian Laohakosol, Combinatorial Aspects of the Generalized Euler's Totient, International Journal of Mathematics and Mathematical Sciences, Volume 2010 (2010), Article ID 648165, 15 p.
- Wolfgang Schramm, The Fourier transform of functions of the greatest common divisor, Electronic Journal of Combinatorial Number Theory A50 (8(1)), 2008.
- N. J. A. Sloane, Transforms.
- S. Thajoddin and S. Vangipuram, A Note On Jordan's Totient Function, Indian J. Pure Appl. Math, 1988.
- László Tóth, Multiplicative arithmetic functions of several variables: a survey, arXiv preprint arXiv:1310.7053 [math.NT], 2013.
- Wikipedia, Jordan's totient function.
- Index to divisibility sequences
Crossrefs
Programs
-
Haskell
a007434 n = sum $ zipWith3 (\x y z -> x * y * z) tdivs (reverse tdivs) (reverse divs) where divs = a027750_row n; tdivs = map a000010 divs -- Reinhard Zumkeller, Nov 24 2012
-
Maple
J := proc(n,k) local i,p,t1,t2; t1 := n^k; for p from 1 to n do if isprime(p) and n mod p = 0 then t1 := t1*(1-p^(-k)); fi; od; t1; end; # (with k = 2) A007434 := proc(n) add(d^2*numtheory[mobius](n/d),d=numtheory[divisors](n)) ; end proc: # R. J. Mathar, Nov 03 2015
-
Mathematica
jordanTotient[n_, k_:1] := DivisorSum[n, #^k*MoebiusMu[n/#] &] /; (n > 0) && IntegerQ[n]; Table[jordanTotient[n, 2], {n, 48}] (* Enrique Pérez Herrero, Sep 14 2010 *) a[ n_] := If[ n < 1, 0, Sum[ d^2 MoebiusMu[ n/d], {d, Divisors @ n}]]; (* Michael Somos, Jan 11 2014 *) a[ n_] := If[ n < 2, Boole[ n == 1], n^2 (Times @@ ((1 - 1/#[[1]]^2) & /@ FactorInteger @ n))]; (* Michael Somos, Jan 11 2014 *) jordanTotient[n_Integer?Positive, r_:1] := DirichletConvolve[MoebiusMu[K], K^r, K, n]; Table[jordanTotient[n, 2], {n, 48}] (* Jan Mangaldan, Jun 03 2016 *)
-
PARI
{a(n) = if( n<1, 0, sumdiv(n, d, d^2 * moebius(n / d)))}; /* Michael Somos, Mar 20 2004 */
-
PARI
{a(n) = if( n<1, 0, direuler( p=2, n, (1 - X) / (1 - X*p^2))[n])}; /* Michael Somos, Jan 11 2014 */
-
PARI
seq(n) = dirmul(vector(n,k,k^2), vector(n,k,moebius(k))); seq(48) \\ Gheorghe Coserea, May 11 2016
-
PARI
jordan(n,k)=my(a=n^k);fordiv(n,i,if(isprime(i),a*=(1-1/(i^k))));a \\ Roderick MacPhee, May 05 2017
-
Python
from math import prod from sympy import factorint def A007434(n): return prod(p**(e-1<<1)*(p**2-1) for p, e in factorint(n).items()) # Chai Wah Wu, Jan 29 2024
Formula
Moebius transform of squares.
Multiplicative with a(p^e) = p^(2e) - p^(2e-2). - Vladeta Jovovic, Jul 26 2001
a(n) = Sum_{d|n} d^2 * mu(n/d). - Benoit Cloitre, Apr 05 2002
a(n) = n^2 * Product_{p|n} (1-1/p^2). - Tom Edgar, Jan 07 2015
a(n) = Sum_{d|n} phi(d)*phi(n/d)*n/d; Sum_{d|n} a(d) = n^2. - Reinhard Zumkeller, Aug 20 2005
Dirichlet generating function: zeta(s-2)/zeta(s). - Franklin T. Adams-Watters, Sep 11 2005
Dirichlet inverse of A046970. - Michael Somos, Jan 11 2014
a(n) = a(n^2)/n^2. - Enrique Pérez Herrero, Sep 14 2010
If n > 1, then 1 > a(n)/n^2 > 1/zeta(2). - Enrique Pérez Herrero, Jul 14 2011
a(n) = Sum_{d|n} phi(n^2/d)*mu(d)^2. - Enrique Pérez Herrero, Jul 24 2012
a(n) = Sum_{k = 1..n} gcd(k, n)^2 * cos(2*Pi*k/n). - Enrique Pérez Herrero, Jan 18 2013
a(1) + a(2) + ... + a(n) ~ 1/(3*zeta(3))*n^3 + O(n^2). Lambert series Sum_{n >= 1} a(n)*x^n/(1 - x^n) = x*(1 + x)/(1 - x)^3. - Peter Bala, Dec 23 2013
n * a(n) = A000056(n). - Michael Somos, Mar 20 2004
a(n) = 24 * A115000(n) unless n < 5. - Michael Somos, Aug 12 2008
a(n) = A001065(n) - A134675(n). - Conjectured by John Mason and proved by Max Alekseyev, Jan 07 2015
a(n) = Sum_{k=1..n} gcd(n, k) * phi(gcd(n, k)), where phi(k) is the Euler totient function. - Daniel Suteu, Jun 15 2018
G.f.: Sum_{k>=1} mu(k)*x^k*(1 + x^k)/(1 - x^k)^3. - Ilya Gutkovskiy, Oct 24 2018
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^2/(p^2 - 1)^2) = 1.81078147612156295224312590448625180897250361794500723589001447178002894356... - Vaclav Kotesovec, Sep 19 2020
Limit_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^2 = 1/zeta(3) (A088453). - Amiram Eldar, Oct 12 2020
From Richard L. Ollerton, May 09 2021: (Start)
a(n) = Sum_{k=1..n} (n/gcd(n,k))^2*mu(gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} gcd(n,k)^2*mu(n/gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} n*phi(gcd(n,k))/gcd(n,k).
a(n) = Sum_{k=1..n} phi(n*gcd(n,k))*mu(n/gcd(n,k))^2.
a(n) = Sum_{k=1..n} phi(n^2/gcd(n,k))*mu(gcd(n,k))^2*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
a(n) = Sum_{k = 1..n} phi(gcd(n, k)^2) = Sum_{d divides n} phi(d^2)*phi(n/d). - Peter Bala, Jan 17 2024
a(n) = Sum_{1 <= i, j <= n, lcm(i, j) = n} phi(i)*phi(j). See Tóth, p. 14. - Peter Bala, Jan 29 2024
Conjecture: a(n) = lim_{k->oo} (n^(2*(k + 1)))/A001157(n^k). - Velin Yanev, Dec 04 2024
Extensions
Thanks to Michael Somos for catching an error in this sequence.
Comments