A007494 Numbers that are congruent to 0 or 2 mod 3.
0, 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107
Offset: 0
References
- L. Flatto, Z-numbers and beta-transformations, in Symbolic dynamics and its applications (New Haven, CT, 1991), 181-201, Contemp. Math., 135, Amer. Math. Soc., Providence, RI, 1992.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1002.
- Attila Máder, The Use of Experimental Mathematics in the Classroom, in Interesting Mathematical Problems in Sciences and Everyday Life - 2011.
- Kurt Mahler, An unsolved problem on the powers of 3/2, J. Austral. Math. Soc., Vol. 8 (1968), pp. 313-321.
- P. Sabinin and M. G. Stone, Transforming n-gons by Folding the Plane, Amer. Math. Monthly, Vol. 102, No. 7 (1995), pp. 620-627.
- Eric Weisstein's World of Mathematics, Folding.
- Robert G. Wilson v, Notes with attachment.
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Programs
-
Haskell
a007494 = flip div 2 . (+ 1) . (* 3) -- Reinhard Zumkeller, Dec 12 2014
-
Magma
[(6*n+1)/4-(-1)^n/4: n in [0..80]]; // Vincenzo Librandi, Aug 20 2011
-
Maple
a[0]:=0:a[1]:=2:for n from 2 to 100 do a[n]:=a[n-2]+3 od: seq(a[n], n=0..71); # Zerinvary Lajos, Mar 16 2008 A007494:=n->floor((3*n+1)/2); seq(A007494(k), k=0..100); # Wesley Ivan Hurt, Sep 27 2013
-
Mathematica
Flatten[{#,#+2}&/@(3Range[0,40])] (* Harvey P. Dale, May 15 2011 *) Table[2n - Floor[n/2], {n,0,100}] (* Wesley Ivan Hurt, Sep 27 2013 *)
-
PARI
a(n)=n+(n+1)>>1 \\ Charles R Greathouse IV, Jul 25 2011
Formula
a(n) = 3*n/2 if n even, otherwise (3*n+1)/2.
If u(1)=0, u(n) = n + floor(u(n-1)/3), then a(n-1) = u(n). - Benoit Cloitre, Nov 26 2002
G.f.: x*(x+2)/((1-x)^2*(1+x)). - Ralf Stephan, Apr 13 2002
a(n) = (6*n+1)/4 - (-1)^n/4; a(n) = Sum_{k=0..n-1} (1 + (-1)^(k/2)*cos(k*Pi/2)). - Paul Barry, Aug 18 2007
A145389(a(n)) <> 1. - Reinhard Zumkeller, Oct 10 2008
a(n) = 3*n - a(n-1) - 1 (with a(0)=0). - Vincenzo Librandi, Nov 18 2010
a(n) = n + ceiling(n/2). - Arkadiusz Wesolowski, Sep 18 2012
a(n) = 2n - floor(n/2) = floor((3n+1)/2) = n + (n + (n mod 2))/2. - Wesley Ivan Hurt, Oct 19 2013
a(n) = n + floor(n/2) + (n mod 2). - Bruno Berselli, Apr 04 2016
a(n) = Sum_{i=1..n} numerator(2/i). - Wesley Ivan Hurt, Feb 26 2017
a(n) = Sum_{k=0..n-1} Sum_{i=0..k} C(i,k)+(-1)^(k-i). - Wesley Ivan Hurt, Sep 20 2017
E.g.f.: (3*exp(x)*x + sinh(x))/2. - Stefano Spezia, Feb 11 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = log(3)/2 - Pi/(6*sqrt(3)). - Amiram Eldar, Dec 04 2021
Comments