A007655 Standard deviation of A007654.
0, 1, 14, 195, 2716, 37829, 526890, 7338631, 102213944, 1423656585, 19828978246, 276182038859, 3846719565780, 53577891882061, 746243766783074, 10393834843080975, 144767444036350576, 2016350381665827089, 28084137899285228670, 391161580208327374291, 5448177985017298011404
Offset: 1
Examples
G.f. = x^2 + 14*x^3 + 195*x^4 + 2716*x^5 + 37829*x^6 + 526890*x^7 + ...
References
- D. A. Benaron, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..874 (terms 1..100 from T. D. Noe)
- R. Flórez, R. A. Higuita and A. Mukherjee, Alternating Sums in the Hosoya Polynomial Triangle, Article 14.9.5 Journal of Integer Sequences, Vol. 17 (2014).
- D. S. Hale, 3165. Perfect Squares of the Form 48n^2+1, Math. Gaz., Oct. 1966, page 307.
- Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Tanya Khovanova, Recursive Sequences
- Murray S. Klamkin, Perfect Squares of the Form (m^2 - 1)a_n^2 + t, Math. Mag., 1969, page 111.
- E. K. Lloyd, The standard deviation of 1, 2, ..., n, Pell's equation and rational triangles, The Mathematical Gazette, Vol. 81, No. 491 (Jul., 1997), pp. 231-243.
- Dino Lorenzini and Z. Xiang, Integral points on variable separated curves, Preprint 2016.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (14,-1).
Crossrefs
Cf. A000217, A001570, A003500, A011922, A011943, A011945, A028230, A046184, A049310, A053120, A055793, A067900, A098301, A101950, A103974.
Chebyshev sequence U(n, m): A000027 (m=1), A001353 (m=2), A001109 (m=3), A001090 (m=4), A004189 (m=5), A004191 (m=6), this sequence (m=7), A077412 (m=8), A049660 (m=9), A075843 (m=10), A077421 (m=11), A077423 (m=12), A097309 (m=13), A097311 (m=14), A097313 (m=15), A029548 (m=16), A029547 (m=17), A144128 (m=18), A078987 (m=19), A097316 (m=33).
Cf. A323182.
Programs
-
GAP
m:=7;; a:=[0,1];; for n in [3..20] do a[n]:=2*m*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
-
Magma
[n le 2 select n-1 else 14*Self(n-1)-Self(n-2): n in [1..70]]; // Vincenzo Librandi, Feb 02 2016
-
Maple
0,seq(orthopoly[U](n,7),n=0..30); # Robert Israel, Feb 04 2016
-
Mathematica
Table[GegenbauerC[n, 1, 7], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *) LinearRecurrence[{14,-1}, {0,1}, 20] (* Vincenzo Librandi, Feb 02 2016 *) ChebyshevU[Range[21] -2, 7] (* G. C. Greubel, Dec 23 2019 *) Table[Sum[Binomial[n, 2 k - 1]*7^(n - 2 k + 1)*48^(k - 1), {k, 1, n}], {n, 0, 15}] (* Horst H. Manninger, Jan 16 2022 *)
-
PARI
concat(0, Vec((x^2/(1-14*x+x^2) + O(x^30)))) \\ Michel Marcus, Feb 02 2016
-
PARI
vector(21, n, polchebyshev(n-2, 2, 7) ) \\ G. C. Greubel, Dec 23 2019
-
Sage
[lucas_number1(n,14,1) for n in range(0,20)] # Zerinvary Lajos, Jun 25 2008
-
Sage
[chebyshev_U(n,7) for n in (-1..20)] # G. C. Greubel, Dec 23 2019
Formula
a(n) = 14*a(n-1) - a(n-2).
G.f.: x^2/(1-14*x+x^2).
a(n+1) ~ 1/24*sqrt(3)*(2 + sqrt(3))^(2*n). - Joe Keane (jgk(AT)jgk.org), May 15 2002
a(n+1) = S(n-1, 14), n>=0, with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind. S(-1, x) := 0. See A049310.
a(n+1) = ( (7+4*sqrt(3))^n - (7-4*sqrt(3))^n )/(8*sqrt(3)).
a(n+1) = sqrt((A011943(n)^2 - 1)/48), n>=0.
Chebyshev's polynomials U(n-2, x) evaluated at x=7.
a(n) = A001353(2n)/4. - Lekraj Beedassy, Jul 15 2002
4*a(n+1) + A046184(n) = A055793(n+2) + A098301(n+1) 4*a(n+1) + A098301(n+1) + A055793(n+2) = A046184(n+1) (4*a(n+1))^2 = A098301(2n+1) (conjectures). - Creighton Dement, Nov 02 2004
From Mohamed Bouhamida, May 26 2007: (Start)
a(n) = 13*( a(n-1) + a(n-2) ) - a(n-3).
a(n) = 15*( a(n-1) - a(n-2) ) + a(n-3). (End)
a(n) = b such that (-1)^n/4*Integral_{x=-Pi/2..Pi/2} (sin((2*n-2)*x))/(2-sin(x)) dx = c+b*log(3). - Francesco Daddi, Aug 02 2011
a(n+2) = Sum_{k=0..n} A101950(n,k)*13^k. - Philippe Deléham, Feb 10 2012
Product {n >= 1} (1 + 1/a(n)) = 1/3*(3 + 2*sqrt(3)). - Peter Bala, Dec 23 2012
Product {n >= 2} (1 - 1/a(n)) = 1/7*(3 + 2*sqrt(3)). - Peter Bala, Dec 23 2012
E.g.f.: 1 - exp(7*x)*(12*cosh(4*sqrt(3)*x) - 7*sqrt(3)*sinh(4*sqrt(3)*x))/12. - Stefano Spezia, Dec 11 2022
Extensions
Chebyshev comments from Wolfdieter Lang, Nov 08 2002
Comments