A008615 a(n) = floor(n/2) - floor(n/3).
0, 0, 1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 7, 6, 7, 7, 7, 7, 8, 7, 8, 8, 8, 8, 9, 8, 9, 9, 9, 9, 10, 9, 10, 10, 10, 10, 11, 10, 11, 11, 11, 11, 12, 11, 12, 12, 12, 12, 13, 12, 13, 13, 13, 13, 14, 13, 14, 14, 14, 14, 15, 14
Offset: 0
Examples
G.f. = x^2 + x^4 + x^5 + x^6 + x^7 + 2*x^8 + x^9 + 2*x^10 + 2*x^11 + 2*x^12 + ...
References
- Avner Ash and Robert Gross, Summing it up, Princeton University Press, 2016, p. 178.
- D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 100.
- E. Freitag, Siegelsche Modulfunktionen, Springer-Verlag, Berlin, 1983; p. 141, Th. 1.1.
- R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962.
- J.-M. Kantor, Où en sont les mathématiques, La formule de Molien-Weyl, SMF, Vuibert, p. 79
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- David Broadhurst, Feynman integrals, L-series and Kloosterman moments, arXiv:1604.03057 [physics.gen-ph], 2016. See Cor. 1.
- J. Igusa, On Siegel modular forms of genus 2 (II), Amer. J. Math., 86 (1964), 392-412, esp. p. 402.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 212
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 448
- Clark Kimberling, A Combinatorial Classification of Triangle Centers on the Line at Infinity, J. Int. Seq., Vol. 22 (2019), Article 19.5.4.
- A. V. Kitaev and A. Vartanian, Algebroid Solutions of the Degenerate Third Painlevé Equation for Vanishing Formal Monodromy Parameter, arXiv:2304.05671 [math.CA], 2023. See p. 20.
- T. Shioda, On the graded ring of invariants of binary octavics, Amer. J. Math. 89, 1022-1046, 1967.
- William A. Stein, The modular forms database
- James Tanton, Integer Triangles, Chapter 11 in "Mathematics Galore!" (MAA, 2012).
- James Tanton, Young students approach integer triangles, FOCUS 22 no. 5 (2002), 4 - 6.
- James Tanton et al., Young students approach integer triangles, FOCUS 22 no. 5 (2002), 4 - 6.
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,0,-1).
Crossrefs
Programs
-
Haskell
a008615 n = n `div` 2 - n `div` 3 -- Reinhard Zumkeller, Apr 28 2014
-
Magma
[Floor(n/2)-Floor(n/3): n in [0..10]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
-
Magma
a := func< n | n lt 2 select 0 else n eq 2 select 1 else Dimension( ModularForms( PSL2( Integers()), 2*n-4))>; /* Michael Somos, Dec 11 2018 */
-
Maple
a := n-> floor(n/2) - floor(n/3): seq(a(n), n = 0 .. 87);
-
Mathematica
a[n_]:=Floor[n/2]-Floor[n/3]; Array[a,90,0] (* Vladimir Joseph Stephan Orlovsky, Dec 05 2008; corrected by Harvey P. Dale, Nov 30 2011 *) LinearRecurrence[{0, 1, 1, 0, -1}, {0, 0, 1, 0, 1}, 100]; (* Vincenzo Librandi, Sep 09 2015 *)
-
PARI
{a(n) = (n\2) - (n\3)}; /* Michael Somos, Feb 06 2003 */
-
Python
def A008615(n): return n//2 - n//3 # Chai Wah Wu, Jun 07 2022
Formula
a(n) = a(n-6) + 1 = a(n-2) + a(n-3) - a(n-5). - Henry Bottomley, Sep 02 2000
G.f.: x^2 / ((1-x^2) * (1-x^3)).
From Reinhard Zumkeller, Feb 27 2008: (Start)
a(6*k) = k, k >= 0. - Zak Seidov, Sep 09 2012
a(n) = floor((n+4)/6) - floor((n+3)/6) + floor((n+2)/6). - Mircea Merca, Nov 27 2013
Euler transform of length 3 sequence [0, 1, 1]. - Michael Somos, Mar 01 2014
a(n+2) = a(n) + 1 if n == 0 (mod 3), a(n+2) = a(n) otherwise. - Michael Somos, Mar 01 2014. See the May 08 2017 comment above. - Wolfdieter Lang, May 08 2017
a(n) = -a(-1 - n) for all n in Z. - Michael Somos, Mar 01 2014.
a(n) = Sum_{i=0..n-2} (floor(i/6)-floor((i-3)/6))*(-1)^i. - Wesley Ivan Hurt, Sep 08 2015
a(n) = a(n+6) - 1 = A103221(n+4) - 1, n >= 0. - Wolfdieter Lang, Sep 16 2016
12*a(n) = 2*n +1 +3*(-1)^n -4*A057078(n). - R. J. Mathar, Jun 19 2019
a(n) = Sum_{k=1..floor((n+3)/2)} Sum_{j=k..floor((2*n+6-k)/3)} Sum_{i=j..floor((2*n+6-j-k)/2)} ([j-k = i-j = 2*n+6-2*i-j-k] - [k = j = i = 2*n+6-i-j-k]), where [ ] is the (generalized) Iverson bracket. - Wesley Ivan Hurt, Jan 17 2021
E.g.f.: (3*(2 + x)*cosh(x) - 2*exp(-x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)) + 3*(x-1)*sinh(x))/18. - Stefano Spezia, Oct 17 2022
Comments