A008776 Pisot sequences E(2,6), L(2,6), P(2,6), T(2,6).
2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 118098, 354294, 1062882, 3188646, 9565938, 28697814, 86093442, 258280326, 774840978, 2324522934, 6973568802, 20920706406, 62762119218, 188286357654, 564859072962, 1694577218886, 5083731656658, 15251194969974
Offset: 0
References
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 203).
Links
- Franklin T. Adams-Watters, Table of n, a(n) for n = 0..200
- Shaoshi Chen, Hanqian Fang, Sergey Kitaev, and Candice X.T. Zhang, Patterns in Multi-dimensional Permutations, arXiv:2411.02897 [math.CO], 2024. See pp. 2, 26.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 170
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Tanya Khovanova, Recursive Sequences
- Craig Knecht, Sphinx tiling of a repetitive shape.
- C. Moore, Some Polyomino Tilings of the Plane, arXiv:math/9905012 [math.CO], 1999.
- C. Pisot, La répartition modulo 1 et les nombres algébriques, Ann. Scu. Norm. Sup. Pisa 2 ser, vol 7. no 3-4 (1938) p 205-248.
- Index entries for linear recurrences with constant coefficients, signature (3).
Programs
-
GAP
List([0..30], n-> 2*3^n); # G. C. Greubel, Sep 11 2019
-
Haskell
a008776 = (* 2) . (3 ^) a008776_list = iterate (* 3) 2 -- Reinhard Zumkeller, Oct 19 2015
-
Magma
[2*3^n: n in [0..30]]; // G. C. Greubel, Sep 11 2019
-
Maple
# E(x,y) is f(n,x,y,1/2), T(x,y) is f(n,x,y,0), and S(x,y) is f(n,x,y,1). f:=proc(n,x,y,r) option remember; if n=0 then x elif n=1 then y else floor(f(n-1,x,y,r)^2/f(n-2,x,y,r) + r); fi; end; [seq(f(n,2,6,1/2),n=0..30)]; # N. J. A. Sloane, Jul 30 2016
-
Mathematica
Table[EulerPhi[3^n], {n, 0, 100}] (* Artur Jasinski, Nov 19 2008 *) Table[MatrixPower[{{1,2},{1,2}},n][[1]][[2]],{n,0,44}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *) NestList[3#&,2,50] (* Harvey P. Dale, Nov 28 2022 *)
-
PARI
a(n)=3^n<<1 \\ corrected by Michel Marcus, Aug 03 2015
-
Python
def A008776(n): return 3**n<<1 # Chai Wah Wu, Apr 02 2025
-
Sage
[2*3^n for n in (0..30)] # G. C. Greubel, Sep 11 2019
Formula
a(n) = 2*3^n.
a(n) = 3*a(n-1).
G.f.: 2/(1-3*x). - Philippe Deléham, Oct 08 2007
a(n-1) = phi(3^n). - Artur Jasinski, Nov 19 2008
E.g.f.: 2*exp(3*x). - Mohammad K. Azarian, Jan 15 2009
From Paul Curtz, Jan 20 2009: (Start)
a(n) = A048473(n) + 1.
a(n) = A052919(n+1)-1.
a(n) = A115099(n) - 2.
a(n) = A100774(n) + 2. (End)
If p[i]=2, (i >= 1), and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i <= j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n >= 1, a(n-1)=det A. - Milan Janjic, Apr 29 2010
G.f.: ((1/2)/G(0)-1)/x^2 where G(k) = 1 - 2^k/(2 - 4*x/(2*x - 2^k/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 22 2012
G.f.: -G(0)/x where G(k) = 1 - 1/(1-2*x)/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 25 2013
G.f.: (1 - 1/Q(0))/x where Q(k) = 1 - x*(2*k-2)/(1 - x*(2*k+5)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 19 2013
G.f.: W(0), where W(k) = 1 + 1/(1 - x*(2*k+3)/(x*(2*k+4) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013
Extensions
Jasinski formula corrected by Charles R Greathouse IV, Feb 18 2011
Comments