cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008794 Squares repeated; a(n) = floor(n/2)^2.

Original entry on oeis.org

0, 0, 1, 1, 4, 4, 9, 9, 16, 16, 25, 25, 36, 36, 49, 49, 64, 64, 81, 81, 100, 100, 121, 121, 144, 144, 169, 169, 196, 196, 225, 225, 256, 256, 289, 289, 324, 324, 361, 361, 400, 400, 441, 441, 484, 484, 529, 529, 576, 576
Offset: 0

Views

Author

Keywords

Comments

Also number of non-attacking kings on (n-1) X (n-1) board (cf. A030978). - Koksal Karakus (karakusk(AT)hotmail.com), May 27 2002
Also the independence number and clique covering number of the (n-1) X (n-1) king graph. - Eric W. Weisstein, Jun 20 2017
Maximum number of 2 X 2 tiles that fit on an n X n board. - Jon Perry, Aug 10 2003
(n)-(1) + (n-1)-(2) + (n-3)-(3) + ... + (n-r)-(r) ... n terms. E.g., 5-1+4-2+3 = 9, 6-1+5-2+4-3 = 9, 7-1+6-2+5-3+4 = 16, 8-1+7-2+6-3+5-4 = 16. - Amarnath Murthy, Jul 24 2005
The smallest possible number of white cells in a solution to an n X n nurikabe grid. - Tanya Khovanova, Feb 24 2009
(1 + x + 4*x^2 + 4*x^3 + 9*x^4 + ...) = (1/(1-x))*(1 + 3*x^2 + 5*x^4 + 7*x^6 + ...). - Gary W. Adamson, Apr 07 2010
If the set {1,2,...,n} is divided in half (a part having size ceiling(n/2) and the rest), then a(n+1) is the largest possible difference between the totals of these parts. - Vladimir Shevelev, Oct 14 2017
a(n+1) is the sum of the smallest parts of the partitions of 2n into two odd parts. - Wesley Ivan Hurt, Dec 06 2017
a(n-1) is the largest number of single cells of an n X n grid that share no edge or vertex with each other or those of the grid perimeter. - Stefano Spezia, Jul 30 2021
The binomial transform is 0, 0, 1, 4, 14, 44, 128, 352, 928, 2368, 5888... (see A007466). - R. J. Mathar, Feb 25 2023

Crossrefs

Programs

  • GAP
    Flat(List([0..24],n->[n^2,n^2])); # Muniru A Asiru, Oct 09 2018
    
  • Magma
    [(2*n-1)*(-1)^n/8+(2*n^2-2*n +1)/8: n in [0..60]]; // Vincenzo Librandi, Aug 21 2011
    
  • Maple
    A008794:=n->floor(n/2)^2: seq(A008794(n), n=0..50); # Wesley Ivan Hurt, Dec 08 2017
  • Mathematica
    With[{sq = Range[0, 30]^2}, Riffle[sq, sq]] (* Harvey P. Dale, Nov 20 2015 *)
    Table[Floor[n/2]^2, {n, 0, 49}] (* Michael De Vlieger, Oct 21 2016 *)
    Table[(2 n - 1) (-1)^n/8 + (2 n^2 - 2 n + 1)/8, {n, 0, 49}] (* Michael De Vlieger, Oct 21 2016 *)
    CoefficientList[Series[x^2*(1 + x^2)/((1 - x) (1 - x^2)^2), {x, 0, 49}], x] (* Michael De Vlieger, Oct 21 2016 *)
    CoefficientList[Series[((x^2-x)Cosh[x]+(1+x+x^2)Sinh[x])/4,{x,0,50}],x]*Table[k!,{k,0,50}] (* Stefano Spezia, Oct 07 2018 *)
  • PARI
    a(n)=(n\2)^2 \\ Charles R Greathouse IV, Sep 24 2015
    
  • PARI
    first(n) = Vec(x^2*(1 + x^2)/((1 - x)*(1 - x^2)^2) + O(x^n), -n) \\ Iain Fox, Dec 08 2017
    
  • Python
    def A008794(n): return (n//2)**2 # Chai Wah Wu, Jun 07 2022
  • Sage
    [((-1)^n*(2*n-1) +(2*n^2-2*n +1))/8 for n in (0..50)] # G. C. Greubel, Sep 11 2019
    

Formula

G.f.: x^2*(1 + x^2)/((1 - x)*(1 - x^2)^2).
a(n) = floor(n/2)^2.
From Paul Barry, May 31 2003: (Start)
a(n) = (2*n - 1)*(-1)^n/8 + (2*n^2 - 2*n + 1)/8.
a(n+1) = Sum_{k=0..n} k*(1-(-1)^k)/2. (End)
a(n+2) = Sum_{k=0..n} A109613(k)*A059841(n-k). - Reinhard Zumkeller, Dec 05 2009
a(n) = A182579(n,n-2) for n > 1. - Reinhard Zumkeller, May 07 2012
3*a(n) = A032766(n)^2 - A032766(n^2). - Bruno Berselli, Oct 21 2016
a(n) = Sum_{i=1..n-1; i odd} i. - Olivier Pirson, Nov 06 2017
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), n > 4. - Iain Fox, Dec 08 2017
E.g.f.: ((x^2 - x)*cosh(x) + (1 + x + x^2)*sinh(x))/4. - Stefano Spezia, Oct 07 2018