A172049
Irregular triangle T(n,k) = 2k-1 with A008794(n+2) values in row n.
Original entry on oeis.org
1, 1, 1, 3, 5, 7, 1, 3, 5, 7, 1, 3, 5, 7, 9, 11, 13, 15, 17, 1, 3, 5, 7, 9, 11, 13, 15, 17, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43
Offset: 1
1;
1;
1, 3, 5, 7;
1, 3, 5, 7;
1, 3, 5, 7, 9, 11, 13, 15, 17;
1, 3, 5, 7, 9, 11, 13, 15, 17;
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31;
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31;
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43,...
A001477
The nonnegative integers.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 0
Triangular view:
0
1 2
3 4 5
6 7 8 9
10 11 12 13 14
15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44
45 46 47 48 49 50 51 52 53 54
- Maurice Protat, Des Olympiades à l'Agrégation, suite vérifiant f(n+1) > f(f(n)), Problème 7, pp. 31-32, Ellipses, Paris 1997.
- N. J. A. Sloane, Table of n, a(n) for n = 0..500000
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- David Corneth, Counting to 13999 visualized | showing changes per digit, YouTube video, 2019.
- Hans Havermann, Table giving n and American English name for n, for 0 <= n <= 100999, without spaces or hyphens
- Hans Havermann, American English number names to one million, without spaces or hyphens
- The IMO Compendium, Problem 6, 19th IMO 1977.
- Tanya Khovanova, Recursive Sequences
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- László Németh, The trinomial transform triangle, J. Int. Seqs., Vol. 21 (2018), Article 18.7.3. Also arXiv:1807.07109 [math.NT], 2018.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 12.
- Eric Weisstein's World of Mathematics, Natural Number
- Eric Weisstein's World of Mathematics, Nonnegative Integer
- Index entries for "core" sequences
- Index entries for sequences that are permutations of the natural numbers
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
- Index to sequences related to Olympiads.
When written as an array, the rows/columns are
A000217,
A000124,
A152948,
A152950,
A145018,
A167499,
A166136,
A167487... and
A000096,
A034856,
A055998,
A046691,
A052905,
A055999... (with appropriate offsets); cf. analogous lists for
A000027 in
A185787.
Cf.
A061579 (transposed matrix / reversed triangle).
-
a001477 = id
a001477_list = [0..] -- Reinhard Zumkeller, May 07 2012
-
print([n for n in 0:280]) # Paul Muljadi, Apr 15 2024
-
[ n : n in [0..100]];
-
[ seq(n,n=0..100) ];
-
Table[n, {n, 0, 100}] (* Stefan Steinerberger, Apr 08 2006 *)
LinearRecurrence[{2, -1}, {0, 1}, 77] (* Robert G. Wilson v, May 23 2013 *)
CoefficientList[ Series[x/(x - 1)^2, {x, 0, 76}], x] (* Robert G. Wilson v, May 23 2013 *)
Range[0,100] (* Harvey P. Dale, Dec 29 2024 *)
-
A001477(n)=n /* first term is a(0) */
-
def a(n): return n
print([a(n) for n in range(78)]) # Michael S. Branicky, Nov 13 2022
A005843
The nonnegative even numbers: a(n) = 2n.
Original entry on oeis.org
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120
Offset: 0
G.f. = 2*x + 4*x^2 + 6*x^3 + 8*x^4 + 10*x^5 + 12*x^6 + 14*x^7 + 16*x^8 + ...
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 2.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 28.
- J.-M. De Koninck and A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 529a pp. 71 and 257, Ellipses, 2004, Paris.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 256.
- N. J. A. Sloane, Table of n, a(n) for n = 0..10000
- Nicolas Bonichon and Pierre-Jean Morel, Baxter d-permutations and other pattern avoiding classes, arXiv:2202.12677 [math.CO], 2022.
- David Callan, On Ascent, Repetition and Descent Sequences, arXiv:1911.02209 [math.CO], 2019.
- Charles Cratty, Samuel Erickson, Frehiwet Negass, and Lara Pudwell, Pattern Avoidance in Double Lists, preprint, 2015.
- Kevin Fagan, Drabble cartoon, Jun 15 1987: Intelligence Test
- Adam M. Goyt and Lara K. Pudwell, Avoiding colored partitions of two elements in the pattern sense, arXiv preprint arXiv:1203.3786 [math.CO], 2012, J. Int. Seq. 15 (2012) # 12.6.2
- Milan Janjic, Two Enumerative Functions
- Tanya Khovanova, Recursive Sequences
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Nathan Sun, On d-permutations and Pattern Avoidance Classes, arXiv:2208.08506 [math.CO], 2022.
- Eric Weisstein's World of Mathematics, Even Number
- Eric Weisstein's World of Mathematics, Hamiltonian Cycle
- Eric Weisstein's World of Mathematics, Riemann Zeta Function Zeros
- Wikipedia, Alkane
- Index entries for "core" sequences
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Cf.
A000027,
A002061,
A005408,
A001358,
A077553,
A077554,
A077555,
A002024,
A087112,
A157888,
A157889,
A140811,
A157872,
A157909,
A157910,
A165900.
Moore lower bound on the order of a (k,g) cage:
A198300 (square); rows:
A000027 (k=2),
A027383 (k=3),
A062318 (k=4),
A061547 (k=5),
A198306 (k=6),
A198307 (k=7),
A198308 (k=8),
A198309 (k=9),
A198310 (k=10),
A094626 (k=11); columns:
A020725 (g=3), this sequence (g=4),
A002522 (g=5),
A051890 (g=6),
A188377 (g=7). -
Jason Kimberley, Oct 30 2011
Cf.
A231200 (boustrophedon transform).
A001318
Generalized pentagonal numbers: m*(3*m - 1)/2, m = 0, +-1, +-2, +-3, ....
Original entry on oeis.org
0, 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, 77, 92, 100, 117, 126, 145, 155, 176, 187, 210, 222, 247, 260, 287, 301, 330, 345, 376, 392, 425, 442, 477, 495, 532, 551, 590, 610, 651, 672, 715, 737, 782, 805, 852, 876, 925, 950, 1001, 1027, 1080, 1107, 1162, 1190, 1247, 1276, 1335
Offset: 0
G.f. = x + 2*x^2 + 5*x^3 + 7*x^4 + 12*x^5 + 15*x^6 + 22*x^7 + 26*x^8 + 35*x^9 + ...
- Enoch Haga, A strange sequence and a brilliant discovery, chapter 5 of Exploring prime numbers on your PC and the Internet, first revised ed., 2007 (and earlier ed.), pp. 53-70.
- Ross Honsberger, Ingenuity in Mathematics, Random House, 1970, p. 117.
- Donald E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, (to appear), section 7.2.1.4, equation (18).
- Ivan Niven and Herbert S. Zuckerman, An Introduction to the Theory of Numbers, 2nd ed., Wiley, NY, 1966, p. 231.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- G. E. Andrews and J. A. Sellers, Congruences for the Fishburn Numbers, arXiv preprint arXiv:1401.5345 [math.NT], 2014.
- Paul Barry, On sequences with {-1, 0, 1} Hankel transforms, arXiv preprint arXiv:1205.2565 [math.CO], 2012. - From _N. J. A. Sloane_, Oct 18 2012
- Burkard Polster (Mathologer), The hardest "What comes next?" (Euler's pentagonal formula), Youtube video, Oct 17 2020.
- S. Cooper and M. D. Hirschhorn, Results of Hurwitz type for three squares, Discrete Math., Vol. 274, No. 1-3 (2004), pp. 9-24. See P(q).
- Stephen Eberhart, Letter to N. J. A. Sloane, Jan 19 1978.
- John Elias, Illustration of Initial Terms: Generalized Penthexagrams.
- John Elias, Illustration: Star Number Fractal.
- John Elias, Illustration: Generalized Pentagonals In Generalized-Octagonal-Hexagrams.
- Andreas Enge, William Hart, and Fredrik Johansson, Short addition sequences for theta functions, arXiv:1608.06810 [math.NT], 2016.
- Leonhard Euler, Découverte d'une loi tout extraordinaire des nombres par rapport à la somme de leurs diviseurs, Opera Omnia, Series I, Vol. 2 (1751), pp. 241-253.
- Leonhard Euler, On the remarkable properties of the pentagonal numbers, arXiv:math/0505373 [math.HO], 2005.
- Leonhard Euler, De mirabilibus proprietatibus numerorum pentagonalium, par. 2
- Leonhard Euler, Observatio de summis divisorum p. 8.
- Leonhard Euler, An observation on the sums of divisors, p. 8, arXiv:math/0411587 [math.HO], 2004.
- Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contrib. Discr. Math., Vol. 3, No. 2 (2008), pp. 76-114.
- Silvia Heubach and Toufik Mansour, Counting rises, levels and drops in compositions, arXiv:math/0310197 [math.CO], 2003.
- Alfred Hoehn, Illustration of initial terms.
- Barbara H. Margolius, Permutations with inversions, J. Integ. Seq., Vol. 4 (2001), Article 01.2.4.
- Johannes W. Meijer, Euler's Ship on the Pentagonal Sea, pdf and jpg.
- Johannes W. Meijer and Manuel Nepveu, Euler's ship on the Pentagonal Sea, Acta Nova, Vol. 4, No. 1 (December 2008), pp. 176-187.
- Mircea Merca, The Lambert series factorization theorem, The Ramanujan Journal, January 2017; DOI: 10.1007/s11139-016-9856-3.
- Mircea Merca and Maxie D. Schmidt, New Factor Pairs for Factorizations of Lambert Series Generating Functions, arXiv:1706.02359 [math.CO], 2017. See Remark 2.2.
- Mircea Merca, Euler's partition function in terms of 2-adic valuation, Bol. Soc. Mat. Mex. 30, 76 (2024). See p. 3.
- Ivan Niven, Formal power series, Amer. Math. Monthly, Vol. 76, No. 8 (1969), pp. 871-889.
- Robert J. Lemke Oliver, Eta quotients and theta functions, Advances in Mathematics, Vol. 241, Jul. 2013, pp. 1-17.
- Vladimir Pletser, Congruence conditions on the number of terms in sums of consecutive squared integers equal to squared integers, arXiv:1409.7969 [math.NT], 2014.
- Vladimir Pletser, Finding all squared integers expressible as the sum of consecutive squared integers using generalized Pell equation solutions with Chebyshev polynomials, arXiv preprint arXiv:1409.7972 [math.NT], 2014.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- S. Realis, Question 271, Nouv. Corresp. Math., 4 (1878) 27-29.
- Steven J. Schlicker, Numbers Simultaneously Polygonal and Centered Polygonal, Mathematics Magazine, Vol. 84, No. 5 (December 2011), pp. 339-350.
- André Weil, Two lectures on number theory, past and present, L'Enseign. Math., Vol. XX (1974), pp. 87-110; Oeuvres III, pp. 279-302.
- Eric Weisstein's World of Mathematics, Pentagonal numbers, Partition Function P.
- Eric Weisstein's World of Mathematics, Pentagonal Number Theorem.
- Wikipedia, Pentagonal number theorem.
- M. Wohlgemuth, Pentagon, Kartenhaus und Summenzerlegung.
- Keke Zhang, Generalized Catalan numbers, arXiv:2011.09593 [math.CO], 2020.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Indices of nonzero terms of
A010815, i.e., the (zero-based) indices of 1-bits of the infinite binary word to which the terms of
A068052 converge.
Sequences of generalized k-gonal numbers: this sequence (k=5),
A000217 (k=6),
A085787 (k=7),
A001082 (k=8),
A118277 (k=9),
A074377 (k=10),
A195160 (k=11),
A195162 (k=12),
A195313 (k=13),
A195818 (k=14),
A277082 (k=15),
A274978 (k=16),
A303305 (k=17),
A274979 (k=18),
A303813 (k=19),
A218864 (k=20),
A303298 (k=21),
A303299 (k=22),
A303303 (k=23),
A303814 (k=24),
A303304 (k=25),
A316724 (k=26),
A316725 (k=27),
A303812 (k=28),
A303815 (k=29),
A316729 (k=30).
-
a:=[0,1,2,5];; for n in [5..60] do a[n]:=2*a[n-2]-a[n-4]+3; od; a; # Muniru A Asiru, Aug 16 2018
-
a001318 n = a001318_list !! n
a001318_list = scanl1 (+) a026741_list -- Reinhard Zumkeller, Nov 15 2015
-
[(6*n^2 + 6*n + 1 - (2*n + 1)*(-1)^n)/16 : n in [0..50]]; // Wesley Ivan Hurt, Nov 03 2014
-
[(3*n^2 + 2*n + (n mod 2) * (2*n + 1)) div 8: n in [0..70]]; // Vincenzo Librandi, Nov 04 2014
-
A001318 := -(1+z+z**2)/(z+1)**2/(z-1)**3; # Simon Plouffe in his 1992 dissertation; gives sequence without initial zero
A001318 := proc(n) (6*n^2+6*n+1)/16-(2*n+1)*(-1)^n/16 ; end proc: # R. J. Mathar, Mar 27 2011
-
Table[n*(n+1)/6, {n, Select[Range[0, 100], Mod[#, 3] != 1 &]}]
Select[Accumulate[Range[0,200]]/3,IntegerQ] (* Harvey P. Dale, Oct 12 2014 *)
CoefficientList[Series[x (1 + x + x^2) / ((1 + x)^2 (1 - x)^3), {x, 0, 70}], x] (* Vincenzo Librandi, Nov 04 2014 *)
LinearRecurrence[{1,2,-2,-1,1},{0,1,2,5,7},70] (* Harvey P. Dale, Jun 05 2017 *)
a[ n_] := With[{m = Quotient[n + 1, 2]}, m (3 m + (-1)^n) / 2]; (* Michael Somos, Jun 02 2018 *)
-
{a(n) = (3*n^2 + 2*n + (n%2) * (2*n + 1)) / 8}; /* Michael Somos, Mar 24 2011 */
-
{a(n) = if( n<0, n = -1-n); polcoeff( x * (1 - x^3) / ((1 - x) * (1-x^2))^2 + x * O(x^n), n)}; /* Michael Somos, Mar 24 2011 */
-
{a(n) = my(m = (n+1) \ 2); m * (3*m + (-1)^n) / 2}; /* Michael Somos, Jun 02 2018 */
-
def a(n):
p = n % 2
return (n + p)*(3*n + 2 - p) >> 3
print([a(n) for n in range(60)]) # Peter Luschny, Jul 15 2022
-
def A001318(n): return n*(n+1)-(m:=n>>1)*(m+1)>>1 # Chai Wah Wu, Nov 23 2024
-
@CachedFunction
def A001318(n):
if n == 0 : return 0
inc = n//2 if is_even(n) else n
return inc + A001318(n-1)
[A001318(n) for n in (0..59)] # Peter Luschny, Oct 13 2012
A236104
Triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists k copies of the positive squares in nondecreasing order, and the first element of column k is in row k(k+1)/2.
Original entry on oeis.org
1, 4, 9, 1, 16, 1, 25, 4, 36, 4, 1, 49, 9, 1, 64, 9, 1, 81, 16, 4, 100, 16, 4, 1, 121, 25, 4, 1, 144, 25, 9, 1, 169, 36, 9, 1, 196, 36, 9, 4, 225, 49, 16, 4, 1, 256, 49, 16, 4, 1, 289, 64, 16, 4, 1, 324, 64, 25, 9, 1, 361, 81, 25, 9, 1, 400, 81, 25, 9, 4
Offset: 1
Triangle begins:
1;
4;
9, 1;
16, 1;
25, 4;
36, 4, 1;
49, 9, 1;
64, 9, 1;
81, 16, 4;
100, 16, 4, 1;
121, 25, 4, 1;
144, 25, 9, 1;
169, 36, 9, 1;
196, 36, 9, 4;
225, 49, 16, 4, 1;
256, 49, 16, 4, 1;
289, 64, 16, 4, 1;
324, 64, 25, 9, 1;
361, 81, 25, 9, 1;
400, 81, 25, 9, 4;
441, 100, 36, 9, 4, 1;
484, 100, 36, 16, 4, 1;
529, 121, 36, 16, 4, 1;
576, 121, 49, 16, 4, 1;
...
For n = 6 the sum of all divisors of all positive integers <= 6 is [1] + [1+2] + [1+3] + [1+2+4] + [1+5] + [1+2+3+6] = 1 + 3 + 4 + 7 + 6 + 12 = 33. On the other hand the 6th row of triangle is 36, 4, 1, therefore the alternating row sum is 36 - 4 + 1 = 33, equaling the sum of all divisors of all positive integers <= 6.
Illustration of the alternating sum of the 6th row as the area of a polygon (or the number of cells), step by step, in the fourth quadrant:
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
. | | | | | |
. | | | | | |
. | | | | | |
. | | | _ _| | _|
. | | | | | _|
. |_ _ _ _ _ _| |_ _ _ _| |_ _ _ _|
.
. 36 36 - 4 = 32 36 - 4 + 1 = 33
.
Then using this method we can draw a symmetric diagram for A000203, A024916, A004125, as shown below:
--------------------------------------------------
n A000203 A024916 Diagram
--------------------------------------------------
. _ _ _ _ _ _ _ _ _ _ _ _
1 1 1 |_| | | | | | | | | | | |
2 3 4 |_ _|_| | | | | | | | | |
3 4 8 |_ _| _|_| | | | | | | |
4 7 15 |_ _ _| _|_| | | | | |
5 6 21 |_ _ _| _| _ _|_| | | |
6 12 33 |_ _ _ _| _| | _ _|_| |
7 8 41 |_ _ _ _| |_ _|_| _ _|
8 15 56 |_ _ _ _ _| _| |* *
9 13 69 |_ _ _ _ _| | _|* *
10 18 87 |_ _ _ _ _ _| _ _|* * *
11 12 99 |_ _ _ _ _ _| |* * * * *
12 28 127 |_ _ _ _ _ _ _|* * * * *
.
The total number of cells in the first n set of symmetric regions of the diagram equals A024916(n). It appears that the total number of cells in the n-th set of symmetric regions of the diagram equals sigma(n) = A000203(n). Example: for n = 12 the 12th row of triangle is 144, 25, 9, 1, hence the alternating sums is 144 - 25 + 9 - 1 = 127. On the other hand we have that A000290(12) - A004125(12) = 144 - 17 = A024916(12) = 127, equaling the total number of cells in the diagram after 12 stages. The number of cells in the 12th set of symmetric regions of the diagram is sigma(12) = A000203(12) = 28. Note that in this case there is only one region. Finally, the number of *'s is A004125(12) = 17.
Note that the diagram is also the top view of the stepped pyramid described in A245092. - _Omar E. Pol_, Feb 12 2018
Cf.
A000203,
A000217,
A000290,
A001227,
A003056,
A008794,
A024916,
A004125,
A196020,
A211343,
A228813,
A231345,
A231347,
A235791,
A235794,
A235799,
A236106,
A236112,
A236540,
A237270,
A237591,
A237593,
A239660,
A244050,
A245092,
A262626,
A286000.
-
Table[Ceiling[(n + 1)/k - (k + 1)/2]^2, {n, 20}, {k, Floor[(Sqrt[8 n + 1] - 1)/2]}] // Flatten (* Michael De Vlieger, Feb 10 2018, after Hartmut F. W. Hoft at A235791 *)
-
from sympy import sqrt
import math
def T(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2))
for n in range(1, 21): print([T(n, k)**2 for k in range(1, int(math.floor((sqrt(8*n + 1) - 1)/2)) + 1)]) # Indranil Ghosh, Apr 25 2017
A000982
a(n) = ceiling(n^2/2).
Original entry on oeis.org
0, 1, 2, 5, 8, 13, 18, 25, 32, 41, 50, 61, 72, 85, 98, 113, 128, 145, 162, 181, 200, 221, 242, 265, 288, 313, 338, 365, 392, 421, 450, 481, 512, 545, 578, 613, 648, 685, 722, 761, 800, 841, 882, 925, 968, 1013, 1058, 1105, 1152, 1201, 1250, 1301, 1352, 1405
Offset: 0
G.f. = x + 2*x^2 + 5*x^3 + 8*x^4 + 13*x^5 + 18*x^6 + 25*x^7 + 32*x^8 + ...
Centrosymmetric 3 X 3 matrix: [[a,b,c],[d,e,d],[c,b,a]], a(3) = 3*(3-1)/2 + (3-1)/2 + 1 = (3^2+1)/2 = 5 from a,b,c,d,e. 4 X 4 case: [[a,b,c,d],[e,f,g,h],[h,g,f,e],[d,c,b,a]], a(4) = 4*4/2 = 8. - _Wolfdieter Lang_, Oct 12 2015
a(3) = 5. The alternating permutation of length 3 + 1 = 4 with the maximum number of copies of 123 is 1324. The five copies are 12, 13, 14, 23, and 24. - _Lara Pudwell_, Dec 01 2020
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..3000
- Nikolai Beluhov, Snake paths in king and knight graphs, arXiv:2301.01152 [math.CO], 2023.
- M. Benoumhani and M. Kolli, Finite topologies and partitions, JIS 13 (2010) # 10.3.5, t_{N0}(n,4) in theorem 5.
- Andrea C. Burgess, Caleb W. Jones, and David A. Pike, Extending Graph Burning to Hypergraphs, arXiv:2403.01001 [math.CO], 2024. See p. 9.
- Geoffrey B. Campbell, Vector Partition Identities for 2D, 3D and nD Lattices, arXiv:2302.01091 [math.CO], 2023.
- Ronald Cools, Ian H. Sloan, Minimial cubature formulae of trigonometric degree, Math. Comp. 65 (216) (1996) 1583-1600. Table 1 dimension 2.
- John Elias, Illustration of Initial Terms: Intersection of a double spaced square grid and centrally aligned triangle.
- J. G. Kalbfleisch and R. G. Stanton, A combinatorial problem in matching, J. London Math. Soc. Vol. 1, No. 1 (1969), 60-64. [Corrected by _N. J. A. Sloane_, Feb 08 2019]
- J. M. Kantor, Mathématiques venues d'ailleurs: divertissements mathématiques en U.R.S.S., Le cube transpercé, pp. 56-62, Belin, Paris, 1982.
- S. Lafortune, A. Ramani, B. Grammaticos, Y. Ohta, and K.M. Tamizhmani, Blending two discrete integrability criteria: ..., arXiv:nlin/0104020 [nlin.SI], 2001.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Lara Pudwell, From permutation patterns to the periodic table, Notices of the American Mathematical Society, 67.7 (2020), 994-1001.
- Eric Weisstein's World of Mathematics, Black Bishop Graph
- Eric Weisstein's World of Mathematics, Edge Cover Number
- Eric Weisstein's World of Mathematics, King Graph
- Eric Weisstein's World of Mathematics, Topology
- Eric Weisstein's World of Mathematics, Vertex Count
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Cf.
A000096,
A000217,
A001105,
A001477,
A001844,
A002061,
A004526,
A005843,
A007590,
A008794,
A037270,
A081352,
A109613,
A110654,
A116940,
A134444,
A158946,
A168380,
A357501.
-
a000982 = (`div` 2) . (+ 1) . (^ 2) -- Reinhard Zumkeller, Jun 27 2013
-
[(2*n^2 + 1 - (-1)^n) / 4: n in [0..60]]; // Vincenzo Librandi, Jun 16 2011
-
seq( ceil(n^2/2),n=0..30) ; # R. J. Mathar, Jun 05 2011
-
Table[Ceiling[n^2/2], {n, 0, 120}] (* Vladimir Joseph Stephan Orlovsky, Apr 02 2011 *)
Accumulate[Join[{0}, (# - Boole[EvenQ[#]] &) /@ Range[80]]] (* Alonso del Arte, Sep 11 2019 *)
-
a(n)=(n^2+1)\2 \\ Charles R Greathouse IV, Sep 13 2013
-
x='x+O('x^100); concat([0], Vec(x*(1+x^2)/((1+x)*(1-x)^3))) \\ Altug Alkan, Oct 12 2015
-
apply( A000982(n)=n^2\/2, [0..55]) \\ M. F. Hasler, Feb 29 2020
-
def A000982(n): return n**2+1>>1 # Chai Wah Wu, Aug 28 2023
-
(((1 to 49) by 2) flatMap { List.fill(2)() }).scanLeft(0)( + ) // _Alonso del Arte, Sep 11 2019
A109613
Odd numbers repeated.
Original entry on oeis.org
1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15, 17, 17, 19, 19, 21, 21, 23, 23, 25, 25, 27, 27, 29, 29, 31, 31, 33, 33, 35, 35, 37, 37, 39, 39, 41, 41, 43, 43, 45, 45, 47, 47, 49, 49, 51, 51, 53, 53, 55, 55, 57, 57, 59, 59, 61, 61, 63, 63, 65, 65, 67, 67, 69, 69, 71, 71, 73
Offset: 0
G.f. = 1 + x + 3*x^2 + 3*x^3 + 5*x^4 + 5*x^5 + 7*x^6 + 7*x^7 + 9*x^8 + 9*x^9 + ...
Complete coach system for (a composite) b = 2*n + 1 = 33: Sigma(33) ={[1; 5], [5, 7, 13; 2, 1, 2]} (the first two rows are here 1 and 5, 7, 13), a_{up}(33) = a(15) = 15. But 15 is not in the reduced residue system modulo 33, so the maximal (odd) a number is 13. For the prime b = 31, a_{up}(31) = a(14) = 15 appears as maximum of the first rows. - _Wolfdieter Lang_, Feb 19 2020
- Peter Hilton and Jean Pedersen, A Mathematical Tapestry: Demonstrating the Beautiful Unity of Mathematics, Cambridge University Press, 2010, 3rd printing 2012, pp. (260-281).
-
a109613 = (+ 1) . (* 2) . (`div` 2)
a109613_list = 1 : 1 : map (+ 2) a109613_list
-- Reinhard Zumkeller, Oct 27 2012, Feb 21 2011
-
A109613:=n->2*floor(n/2)+1; seq(A109613(k), k=0..100); # Wesley Ivan Hurt, Oct 22 2013
-
Flatten@ Array[{2# - 1, 2# - 1} &, 37] (* Robert G. Wilson v, Jul 07 2012 *)
(# - Boole[EvenQ[#]] &) /@ Range[80] (* Alonso del Arte, Sep 11 2019 *)
With[{c=2*Range[0,40]+1},Riffle[c,c]] (* Harvey P. Dale, Jan 02 2020 *)
-
A109613(n)=n>>1<<1+1 \\ Charles R Greathouse IV, Feb 24 2011
-
def a(n) : return( len( CuspForms( Gamma0( 5), 2*n + 4, prec=1). basis())); # Michael Somos, May 29 2013
-
((1 to 49) by 2) flatMap { List.fill(2)() } // _Alonso del Arte, Sep 11 2019
A052928
The even numbers repeated.
Original entry on oeis.org
0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14, 16, 16, 18, 18, 20, 20, 22, 22, 24, 24, 26, 26, 28, 28, 30, 30, 32, 32, 34, 34, 36, 36, 38, 38, 40, 40, 42, 42, 44, 44, 46, 46, 48, 48, 50, 50, 52, 52, 54, 54, 56, 56, 58, 58, 60, 60, 62, 62, 64, 64, 66, 66, 68, 68, 70, 70, 72, 72
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- C. D. Godsil and G. Royle, Algebraic Graph Theory, Springer, 2001, page 181. - Alessandro Cosentino (cosenal(AT)gmail.com), Feb 07 2009
- V. S. Shevelyov (Shevelev), Extension of the Moser class of four-line Latin rectangles, DAN Ukrainy, 3(1992),15-19.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- C. Beierle, A. Biryukov and A. Udovenko, On degree-d zero-sum sets of full rank, Cryptography and Communications, November 2019.
- W. Eisfeld and A. Viel, Higher order (A+E)xe pseudo-Jahn-Teller coupling, J. Chem. Phys., 122, 204317 (2005).
- Nathan Fox, Finding Linear-Recurrent Solutions to Hofstadter-Like Recurrences Using Symbolic Computation, arXiv:1609.06342 [math.NT], 2016.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 914
- J. Sondow and E. W. Weisstein, MathWorld: Wallis Formula
- Eric Weisstein's World of Mathematics, Chromatic Number
- Eric Weisstein's World of Mathematics, Legendre-Gauss Quadrature
- Eric Weisstein's World of Mathematics, Maximum Vertex Degree
- Eric Weisstein's World of Mathematics, Polygon Diagonal Intersection Graph
- Eric Weisstein's World of Mathematics, Random Matrix
- Eric Weisstein's World of Mathematics, White Bishop Graph
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1)
- Index entries for Molien series
Cf.
A000034,
A000124,
A004001,
A004526,
A005843,
A007590,
A008619,
A008794,
A032766,
A064455,
A099392,
A109613,
A118266,
A123684,
A124356,
A192442,
A289187,
A342819.
For n >= 3,
A329822(n) gives the minimum weight of a Boolean function of algebraic degree at most n-3 whose support contains n linearly independent elements. -
Christof Beierle, Nov 25 2019
-
a052928 = (* 2) . flip div 2
a052928_list = 0 : 0 : map (+ 2) a052928_list
-- Reinhard Zumkeller, Jun 20 2015
-
[2*Floor(n/2) : n in [0..50]]; // Wesley Ivan Hurt, Sep 13 2014
-
spec := [S,{S=Union(Sequence(Prod(Z,Z)),Prod(Sequence(Z),Sequence(Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Flatten[Table[{2n, 2n}, {n, 0, 39}]] (* Alonso del Arte, Jun 24 2012 *)
With[{ev=2Range[0,40]},Riffle[ev,ev]] (* Harvey P. Dale, May 08 2021 *)
Table[Round[n + 1/2], {n, -1, 72}] (* Ed Pegg Jr, Jul 28 2025 *)
-
a(n)=n\2*2 \\ Charles R Greathouse IV, Nov 20 2011
Removed duplicate of recurrence; corrected original recurrence and g.f. against offset -
R. J. Mathar, Feb 19 2010
A005993
Expansion of (1+x^2)/((1-x)^2*(1-x^2)^2).
Original entry on oeis.org
1, 2, 6, 10, 19, 28, 44, 60, 85, 110, 146, 182, 231, 280, 344, 408, 489, 570, 670, 770, 891, 1012, 1156, 1300, 1469, 1638, 1834, 2030, 2255, 2480, 2736, 2992, 3281, 3570, 3894, 4218, 4579, 4940, 5340, 5740, 6181, 6622, 7106, 7590, 8119, 8648, 9224, 9800
Offset: 0
a(2) = 6, since ( x1*y1, x2*y2, x1*x1+y1*y1, x2*x2+y2*y2, x1*x2+y1*y2, x1*y2+x2*y1 ) are a basis for homogeneous quadratic invariant polynomials.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- L. Smith, Polynomial Invariants of Finite Groups, A K Peters, 1995, p. 96.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- M. Benoumhani and M. Kolli, Finite topologies and partitions, JIS 13 (2010) # 10.3.5, Lemma 6 3rd line.
- Washington Bomfim, The 19 bracelets with 8 beads - one blue, three reds and four blacks. [From _Washington Bomfim_, Aug 05 2008]
- T. M. Brown, On the unimodality of convolutions of sequences of binomial coefficients, arXiv:1810.08235 [math.CO] (2018).
- Johann Cigler, Some remarks on Rogers-Szegö polynomials and Losanitsch's triangle, arXiv:1711.03340 [math.CO], 2017.
- Dragomir Z. Djokovic, Poincaré series of some pure and mixed trace algebras of two generic matrices, arXiv:math/0609262 [math.AC], 2006. See Table 8.
- Juan B. Gil and Jessica A. Tomasko, Pattern-avoiding even and odd Grassmannian permutations, arXiv:2207.12617 [math.CO], 2022.
- Naihuan Jing, Kailash Misra, and Carla Savage, On multi-color partitions and the generalized Rogers-Ramanujan identities, arXiv:math/9907183 [math.CO], 1999.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
- N. J. A. Sloane, Classic Sequences
- L. Smith, Polynomial invariants of finite groups. A survey of recent developments. Bull. Amer. Math. Soc. (N.S.) 34 (1997), no. 3, 211-250. See page 218. MR1433171 (98i:13009).
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
-
Following Gary W. Adamson.
import Data.List (inits, intersperse)
a005993 n = a005994_list !! n
a005993_list = map (sum . zipWith (*) (intersperse 0 [1, 3 ..]) . reverse) $
tail $ inits [1..]
-- Reinhard Zumkeller, Feb 27 2015
-
I:=[1,2,6,10,19,28]; [n le 6 select I[n] else 2*Self(n-1)+Self(n-2)-4*Self(n-3)+Self(n-4)+2*Self(n-5)-Self(n-6): n in [1..60]]; // Vincenzo Librandi, Jul 19 2015
-
g := proc(n) local i; add(floor(i/2)^2,i=1..n+1) end: # Joseph S. Riel (joer(AT)k-online.com), Mar 22 2002
a:= n-> (Matrix([[1, 0$3, -1, -2]]).Matrix(6, (i,j)-> if (i=j-1) then 1 elif j=1 then [2, 1, -4, 1, 2, -1][i] else 0 fi)^n)[1,1]; seq (a(n), n=0..44); # Alois P. Heinz, Jul 31 2008
-
CoefficientList[Series[(1+x^2)/((1-x)^2*(1-x^2)^2),{x,0,44}],x] (* Jean-François Alcover, Apr 08 2011 *)
LinearRecurrence[{2,1,-4,1,2,-1},{1,2,6,10,19,28},50] (* Harvey P. Dale, Feb 20 2012 *)
-
a(n)=polcoeff((1+x^2)/(1-x)^2/(1-x^2)^2+x*O(x^n),n)
-
a(n) = (binomial(n+3, n) + (1-n%2)*binomial((n+2)/2, n>>1))/2 \\ Washington Bomfim, Aug 05 2008
-
a = vector(50); a[1]=1; a[2]=2;
for(n=3, 50, a[n] = ((n+2)*a[n-2]+2*a[n-1]-n)/(n-2)); a \\ Gerry Martens, Jun 03 2018
-
def A005993():
a, b, to_be = 0, 0, True
while True:
yield (a*(a*(2*a+9)+13)+b*(b+1)*(2*b+1)+6)//6
if to_be: b += 1
else: a += 1
to_be = not to_be
a = A005993()
[next(a) for in range(48)] # _Peter Luschny, May 04 2016
A059260
Triangle read by rows giving coefficient T(i,j) of x^i y^j in 1/(1-y-x*y-x^2) = 1/((1+x)(1-x-y)) for (i,j) = (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), ...
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 0, 2, 2, 1, 1, 2, 4, 3, 1, 0, 3, 6, 7, 4, 1, 1, 3, 9, 13, 11, 5, 1, 0, 4, 12, 22, 24, 16, 6, 1, 1, 4, 16, 34, 46, 40, 22, 7, 1, 0, 5, 20, 50, 80, 86, 62, 29, 8, 1, 1, 5, 25, 70, 130, 166, 148, 91, 37, 9, 1, 0, 6, 30, 95, 200, 296, 314, 239, 128, 46, 10, 1
Offset: 0
Triangle begins
1;
0, 1;
1, 1, 1;
0, 2, 2, 1;
1, 2, 4, 3, 1;
0, 3, 6, 7, 4, 1;
1, 3, 9, 13, 11, 5, 1;
0, 4, 12, 22, 24, 16, 6, 1;
1, 4, 16, 34, 46, 40, 22, 7, 1;
0, 5, 20, 50, 80, 86, 62, 29, 8, 1;
Sequences obtained with _Miquel A. Fiol_'s Sep 30 2024 formula of A(n,c1,c2) for other values of (c1,c2). (In the table, rows are indexed by c1=0..6 and columns by c2=0..6):
A000007 A000012 A000027 A025747 A000292* A000332* A000389*
A059841 A008619 A087811* A002623 A001752 A001753 A001769
A193356 A008794* A005993 A005994 ------- ------- -------
------- ------- ------- A005995 A018210 ------- A052267
------- ------- ------- ------- A018211 A018212 -------
------- ------- ------- ------- ------- A018213 A018214
------- ------- ------- ------- ------- ------- A062136
*requires offset adjustment.
The 2-supertoken FF_2(S_3) of the star graph S_3 with central vertex 1 and peripheral vertices 2,3,4. (The vertex `ij' of FF_2(S_3) represents the configuration of one token in `ì' and the other token in `j'). The T(5,3)=7 independent vertices are 22, 24, 44, 23, 11, 34, and 33.
22--12---24---14---44
| \ / |
23 11 34
\ | /
13
|
33
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Roland Bacher, Chebyshev polynomials, quadratic surds and a variation of Pascal's triangle, arXiv:1509.09054 [math.CO], 2015.
- Joseph Briggs, Alex Parker, Coy Schwieder, and Chris Wells, Frogs, hats and common subsequences, arXiv:2404.07285 [math.CO], 2024. See p. 28.
- Robert Coquereaux and Éric Ragoucy, Currents on Grassmann algebras, J. of Geometry and Physics, 1995, Vol 15, pp 333-352.
- Robert Coquereaux and Éric Ragoucy, Currents on Grassmann algebras, arXiv:hep-th/9310147, 1993.
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 8.
- R. H. Hammack and G. D. Smith, Cycle bases of reduced powers of graphs, Ars Math. Contemp. 12 (2017) 183-203.
- Christian Kassel, A Künneth formula for the cyclic cohomology of Z2-graded algebras, Math. Ann. 275 (1986) 683.
- Ana Filipa Loureiro and Pascal Maroni, Polynomial sequences associated with the classical linear functionals, Numerical Algorithms, June 2012, Volume 60, Issue 2, pp 297-314. - From _N. J. A. Sloane_, Oct 12 2012
- Ana Filipa Loureiro and Pascal Maroni, Polynomial sequences associated with the classical linear functionals, preprint, Centro de Matemática da Universidade do Porto.
- MathOverflow, Cyclotomic Polynomials in Combinatorics
- Mark Norfleet, Characterization of second-order strong divisibility sequences of polynomials, The Fibonacci Quarterly, 43(2) (2005), 166-169.
Seen as a square array read by antidiagonals this is the coefficient of x^k in expansion of 1/((1-x^2)*(1-x)^n) with rows
A002620,
A002623,
A001752,
A001753,
A001769,
A001779,
A001780,
A001781,
A001786,
A001808 etc. (allowing for signs).
A058393 would then effectively provide the table for nonpositive n. -
Henry Bottomley, Jun 25 2001
-
read transforms; 1/(1-y-x*y-x^2); SERIES2(%,x,y,12); SERIES2TOLIST(%,x,y,12);
-
t[n_, k_] := Sum[ (-1)^(n-j)*Binomial[j, k], {j, 0, n}]; Flatten[ Table[t[n, k], {n, 0, 12}, {k, 0, n}]] (* Jean-François Alcover, Oct 20 2011, after Paul Barry *)
-
T(n, k) = sum(j=0, n, (-1)^(n - j)*binomial(j, k));
for(n=0, 12, for(k=0, n, print1(T(n, k),", ");); print();) \\ Indranil Ghosh, Apr 11 2017
-
from sympy import binomial
def T(n, k): return sum((-1)**(n - j)*binomial(j, k) for j in range(n + 1))
for n in range(13): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 11 2017
-
def A059260_row(n):
@cached_function
def prec(n, k):
if k==n: return 1
if k==0: return 0
return -prec(n-1,k-1)-sum(prec(n,k+i-1) for i in (2..n-k+1))
return [(-1)^(n-k+1)*prec(n+1, n-k+1) for k in (1..n)]
for n in (1..9): print(A059260_row(n)) # Peter Luschny, Mar 16 2016
Showing 1-10 of 41 results.
Comments