cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008937 a(n) = Sum_{k=0..n} T(k) where T(n) are the tribonacci numbers A000073.

Original entry on oeis.org

0, 1, 2, 4, 8, 15, 28, 52, 96, 177, 326, 600, 1104, 2031, 3736, 6872, 12640, 23249, 42762, 78652, 144664, 266079, 489396, 900140, 1655616, 3045153, 5600910, 10301680, 18947744, 34850335, 64099760, 117897840, 216847936, 398845537, 733591314, 1349284788
Offset: 0

Views

Author

N. J. A. Sloane, Alejandro Teruel (teruel(AT)usb.ve)

Keywords

Comments

a(n+1) is the number of n-bit sequences that avoid 1100. - David Callan, Jul 19 2004 [corrected by Kent E. Morrison, Jan 08 2019]. Also the number of n-bit sequences avoiding one of the patterns 1000, 0011, 1110, ... or any binary string of length 4 without overlap at beginning and end. Strings where it is not true are: 1111, 1010, 1001, ... and their bitwise complements. - Alois P. Heinz, Jan 09 2019
Row sums of Riordan array (1/(1-x), x(1+x+x^2)). - Paul Barry, Feb 16 2005
Diagonal sums of Riordan array (1/(1-x)^2, x(1+x)/(1-x)), A104698.
A shifted version of this sequence can be found in Eqs. (4) and (3) on p. 356 of Dunkel (1925) with r = 3. (Equation (3) follows equation (4) in the paper!) The whole paper is a study of the properties of this and other similar sequences indexed by the parameter r. For r = 2, we get a shifted version of A000071. For r = 4, we get a shifted version of A107066. For r = 5, we get a shifted version of A001949. For r = 6, we get a shifted version of A172316. See also the table in A172119. - Petros Hadjicostas, Jun 14 2019
Officially, to match A000073, this should start with a(0)=a(1)=0, a(2)=1. - N. J. A. Sloane, Sep 12 2020
Numbers with tribonacci representation that is a prefix of 100100100100... . - Jeffrey Shallit, Jul 10 2024

Examples

			G.f. = x + 2*x^2 + 4*x^3 + 8*x^4 + 15*x^5 + 28*x^6 + 52*x^7 + 96*x^8 + 177*x^9 + ... [edited by _Petros Hadjicostas_, Jun 12 2019]
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 41.

Crossrefs

Partial sums of A000073. Cf. A000213, A018921, A027084, A077908, A209972.
Row sums of A055216.
Column k = 1 of A140997 and second main diagonal of A140994.

Programs

  • GAP
    a:=[0,1,1];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Sep 13 2019
  • Haskell
    a008937 n = a008937_list !! n
    a008937_list = tail $ scanl1 (+) a000073_list
    -- Reinhard Zumkeller, Apr 07 2012
    
  • Magma
    [ n eq 1 select 0 else n eq 2 select 1 else n eq 3 select 2 else n eq 4 select 4 else 2*Self(n-1)-Self(n-4): n in [1..40] ]; // Vincenzo Librandi, Aug 21 2011
    
  • Maple
    A008937 := proc(n) option remember; if n <= 3 then 2^n else 2*procname(n-1)-procname(n-4) fi; end;
    a:= n-> (Matrix([[1,1,0,0], [1,0,1,0], [1,0,0,0], [1,0,0,1]])^n)[4,1]: seq(a(n), n=0..50); # Alois P. Heinz, Jul 24 2008
  • Mathematica
    CoefficientList[Series[x/(1-2x+x^4), {x, 0, 40}], x]
    Accumulate[LinearRecurrence[{1,1,1},{0,1,1},40]] (* Harvey P. Dale, Dec 04 2017 *)
    LinearRecurrence[{2, 0, 0, -1},{0, 1, 2, 4},40] (* Ray Chandler, Mar 01 2024 *)
  • PARI
    {a(n) = if( n<0, polcoeff( - x^3 / (1 - 2*x^3 + x^4) + x * O(x^-n), -n), polcoeff( x / (1 - 2*x + x^4) + x * O(x^n), n))}; /* Michael Somos, Aug 23 2014 */
    
  • PARI
    a(n) = sum(j=0, n\2, sum(k=0, j, binomial(n-2*j,k+1)*binomial(j,k)*2^k)); \\ Michel Marcus, Sep 08 2017
    
  • SageMath
    def A008937_list(prec):
        P = PowerSeriesRing(ZZ, 'x', prec)
        x = P.gen().O(prec)
        return (x/(1-2*x+x^4)).list()
    A008937_list(40) # G. C. Greubel, Sep 13 2019
    

Formula

a(n) = A018921(n-2) = A027084(n+1) + 1.
a(n) = (A000073(n+2) + A000073(n+4) - 1)/2.
From Mario Catalani (mario.catalani(AT)unito.it), Aug 09 2002: (Start)
G.f.: x/((1-x)*(1-x-x^2-x^3)).
a(n) = 2*a(n-1) - a(n-4), a(0) = 0, a(1) = 1, a(2) = 2, a(3) = 4. (End)
a(n) = 1 + a(n-1) + a(n-2) + a(n-3). E.g., a(11) = 1 + 600 + 326 + 177 = 1104. - Philippe LALLOUET (philip.lallouet(AT)orange.fr), Oct 29 2007
a(n) = term (4,1) in the 4 X 4 matrix [1,1,0,0; 1,0,1,0; 1,0,0,0; 1,0,0,1]^n. - Alois P. Heinz, Jul 24 2008
a(n) = -A077908(-n-3). - Alois P. Heinz, Jul 24 2008
a(n) = (A000213(n+2) - 1) / 2. - Reinhard Zumkeller, Apr 07 2012
a(n) = Sum_{j=0..floor(n/2)} Sum_{k=0..j} binomial(n-2j,k+1) *binomial(j,k)*2^k. - Tony Foster III, Sep 08 2017
a(n) = Sum_{k=0..floor(n/2)} (n-2*k)*hypergeom([-k,-n+2*k+1], [2], 2). - Peter Luschny, Nov 09 2017
a(n) = 2^(n-1)*hypergeom([1-n/4, 1/4-n/4, 3/4-n/4, 1/2-n/4], [1-n/3, 1/3-n/3, 2/3-n/3], 16/27) for n > 0. - Peter Luschny, Aug 20 2020
a(n-1) = T(n) + T(n-3) + T(n-6) + ... + T(2+((n-2) mod 3)), for n >= 4, where T is A000073(n+1). - Jeffrey Shallit, Dec 24 2020