cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A010879 Final digit of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0
Offset: 0

Views

Author

Keywords

Comments

Also decimal expansion of 137174210/1111111111 = 0.1234567890123456789012345678901234... - Jason Earls, Mar 19 2001
In general the base k expansion of A062808(k)/A048861(k) (k>=2) will produce the numbers 0,1,2,...,k-1 repeated with period k, equivalent to the sequence n mod k. The k-digit number in base k 123...(k-1)0 (base k) expressed in decimal is A062808(k), whereas A048861(k) = k^k-1. In particular, A062808(10)/A048861(10)=1234567890/9999999999=137174210/1111111111.
a(n) = n^5 mod 10. - Zerinvary Lajos, Nov 04 2009

Crossrefs

Cf. A008959, A008960, A070514. - Doug Bell, Jun 15 2015
Partial sums: A130488. Other related sequences A130481, A130482, A130483, A130484, A130485, A130486, A130487.

Programs

Formula

a(n) = n mod 10.
Periodic with period 10.
From Hieronymus Fischer, May 31 and Jun 11 2007: (Start)
Complex representation: a(n) = 1/10*(1-r^n)*sum{1<=k<10, k*product{1<=m<10,m<>k, (1-r^(n-m))}} where r=exp(Pi/5*i) and i=sqrt(-1).
Trigonometric representation: a(n) = (256/5)^2*(sin(n*Pi/10))^2 * sum{1<=k<10, k*product{1<=m<10,m<>k, (sin((n-m)*Pi/10))^2}}.
G.f.: g(x) = (Sum_{k=1..9} k*x^k)/(1-x^10) = -x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +6*x^5 +7*x^6 +8*x^7 +9*x^8) / ( (x-1) *(1+x) *(x^4+x^3+x^2+x+1) *(x^4-x^3+x^2-x+1) ).
Also: g(x) = x*(9*x^10-10*x^9+1)/((1-x^10)*(1-x)^2).
a(n) = n mod 2+2*(floor(n/2)mod 5) = A000035(n) + 2*A010874(A004526(n)).
Also: a(n) = n mod 5+5*(floor(n/5)mod 2) = A010874(n)+5*A000035(A002266(n)). (End)
a(n) = 10*{n/10}, where {x} means fractional part of x. - Enrique Pérez Herrero, Jul 30 2009
a(n) = n - 10*A059995(n). - Reinhard Zumkeller, Jul 26 2011
a(n) = n^k mod 10, for k > 0, where k mod 4 = 1. - Doug Bell, Jun 15 2015

Extensions

Formula section edited for better readability by Hieronymus Fischer, Jun 13 2012

A008959 Final digit of squares: a(n) = n^2 mod 10.

Original entry on oeis.org

0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Mar 15 1996

Keywords

Comments

a(m*n) = a(m)*a(n) mod 10; a(5*n+k) = a(5*n-k) for k <= 5*n. - Reinhard Zumkeller, Apr 24 2009
a(n) = n^6 mod 10. - Zerinvary Lajos, Nov 06 2009
a(n) = A002015(n) mod 10 = A174452(n) mod 10. - Reinhard Zumkeller, Mar 21 2010
Decimal expansion of 166285490/1111111111. - Alexander R. Povolotsky, Mar 09 2013

Crossrefs

Programs

Formula

Periodic with period 10. - Franklin T. Adams-Watters, Mar 13 2006
a(n) = 4.5 - (1 + 5^(1/2))*cos(Pi*n/5) + (-1 - 3/5*5^(1/2))*cos(2*Pi*n/5) + (5^(1/2) - 1)*cos(3*Pi*n/5) + (-1 + 3/5*5^(1/2))*cos(4*Pi*n/5) - 0.5*(-1)^n. - Richard Choulet, Dec 12 2008
a(n) = A010879(A000290(n)). - Reinhard Zumkeller, Jan 04 2009
G.f.: (x^9+4*x^8+9*x^7+6*x^6+5*x^5+6*x^4+9*x^3+4*x^2+x)/(-x^10+1). - Colin Barker, Aug 14 2012
a(n) = n^2 - 10*floor(n^2/10). - Wesley Ivan Hurt, Jun 12 2013
a(n) = (n - 5*A002266(n + 2))^2 + 5*(5*A002266(n + 2) mod 2). - Wesley Ivan Hurt, Jun 06 2014
a(n) = A033569(n+3) mod 10. - Wesley Ivan Hurt, Dec 06 2014
a(n) = n^k mod 10; for k > 0 where k mod 4 = 2. - Doug Bell, Jun 15 2015

A070514 Final digit of n^4: a(n) = n^4 mod 10.

Original entry on oeis.org

0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0, 1, 6, 1, 6, 5, 6, 1, 6, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, May 13 2002

Keywords

Comments

Decimal expansion of 538853870/3333333333. - Alexander R. Povolotsky, Mar 09 2013

Crossrefs

Cf. A010879, A008959, A008960. - Doug Bell, Jun 15 2015

Programs

Formula

a(n) = n^k mod 10; for k > 0 where k mod 4 = 0. - Doug Bell, Jun 15 2015
From G. C. Greubel, Apr 01 2016: (Start)
a(n) = a(n-10).
a(2*n) = 6*A011558(n).
G.f.: (x +6*x^2 +x^3 +6*x^4 +5*x^5 +6*x^6 +x^7 +6*x^8 +x^9)/(1 - x^10). (End)

A070473 a(n) = n^3 mod 11.

Original entry on oeis.org

0, 1, 8, 5, 9, 4, 7, 2, 6, 3, 10, 0, 1, 8, 5, 9, 4, 7, 2, 6, 3, 10, 0, 1, 8, 5, 9, 4, 7, 2, 6, 3, 10, 0, 1, 8, 5, 9, 4, 7, 2, 6, 3, 10, 0, 1, 8, 5, 9, 4, 7, 2, 6, 3, 10, 0, 1, 8, 5, 9, 4, 7, 2, 6, 3, 10, 0, 1, 8, 5, 9, 4, 7, 2, 6, 3, 10, 0, 1, 8, 5, 9, 4, 7, 2, 6, 3, 10, 0, 1, 8, 5, 9, 4, 7, 2, 6, 3, 10
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2002

Keywords

Crossrefs

Programs

Formula

a(n) = a(n-11). - G. C. Greubel, Mar 26 2016

A070479 a(n) = n^3 mod 17.

Original entry on oeis.org

0, 1, 8, 10, 13, 6, 12, 3, 2, 15, 14, 5, 11, 4, 7, 9, 16, 0, 1, 8, 10, 13, 6, 12, 3, 2, 15, 14, 5, 11, 4, 7, 9, 16, 0, 1, 8, 10, 13, 6, 12, 3, 2, 15, 14, 5, 11, 4, 7, 9, 16, 0, 1, 8, 10, 13, 6, 12, 3, 2, 15, 14, 5, 11, 4, 7, 9, 16, 0, 1, 8, 10, 13, 6, 12, 3, 2, 15, 14, 5, 11, 4, 7, 9, 16, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2002

Keywords

Crossrefs

Cf. A008960.

Programs

Formula

From G. C. Greubel, Mar 28 2016: (Start)
a(n) = a(n-17).
G.f.: (-x - 8x^2 - 10x^3 - 13x^4 - 6x^5 - 12x^6 - 3x^7 - 2x^8 - 15x^9 - 14x^10 - 5x^11 - 11x^12 - 4x^13 - 7x^14 - 9x^15 - 16x^16)/(-1 + x^17). (End)

A070481 a(n) = n^3 mod 19.

Original entry on oeis.org

0, 1, 8, 8, 7, 11, 7, 1, 18, 7, 12, 1, 18, 12, 8, 12, 11, 11, 18, 0, 1, 8, 8, 7, 11, 7, 1, 18, 7, 12, 1, 18, 12, 8, 12, 11, 11, 18, 0, 1, 8, 8, 7, 11, 7, 1, 18, 7, 12, 1, 18, 12, 8, 12, 11, 11, 18, 0, 1, 8, 8, 7, 11, 7, 1, 18, 7, 12, 1, 18, 12, 8, 12, 11, 11, 18, 0, 1, 8, 8, 7, 11, 7, 1, 18
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2002

Keywords

Crossrefs

Cf. A008960.

Programs

Formula

From G. C. Greubel, Mar 28 2016: (Start)
a(n) = a(n-19).
G.f.: (-x -8*x^2 -8*x^3 -7*x^4 -11*x^5 -7*x^6 -x^7 -18*x^8 -7*x^9 - 12*x^10 -x^11 -18*x^12 -12*x^13 -8*x^14 -12*x^15 -11*x^16 -11*x^17 - 18*x^18)/(-1 + x^19). (End)

A070485 a(n) = n^3 mod 23.

Original entry on oeis.org

0, 1, 8, 4, 18, 10, 9, 21, 6, 16, 11, 20, 3, 12, 7, 17, 2, 14, 13, 5, 19, 15, 22, 0, 1, 8, 4, 18, 10, 9, 21, 6, 16, 11, 20, 3, 12, 7, 17, 2, 14, 13, 5, 19, 15, 22, 0, 1, 8, 4, 18, 10, 9, 21, 6, 16, 11, 20, 3, 12, 7, 17, 2, 14, 13, 5, 19, 15, 22, 0, 1, 8, 4, 18, 10, 9, 21, 6, 16, 11, 20, 3
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2002

Keywords

Crossrefs

Cf. A008960.

Programs

Formula

From G. C. Greubel, Mar 28 2016: (Start)
a(n) = a(n-23).
G.f.: (-x -8*x^2 -4*x^3 -18*x^4 -10*x^5 -9*x^6 -21*x^7 -6*x^8 -16*x^9 -11* x^10 -20*x^11 -3*x^12 -12*x^13 -7*x^14 -17*x^15 -2*x^16 -14*x^17 -13*x^18 -5*x^19 -19*x^20 -15*x^21 -22*x^22)/(-1 + x^23). (End)

A070491 a(n) = n^3 mod 29.

Original entry on oeis.org

0, 1, 8, 27, 6, 9, 13, 24, 19, 4, 14, 26, 17, 22, 18, 11, 7, 12, 3, 15, 25, 10, 5, 16, 20, 23, 2, 21, 28, 0, 1, 8, 27, 6, 9, 13, 24, 19, 4, 14, 26, 17, 22, 18, 11, 7, 12, 3, 15, 25, 10, 5, 16, 20, 23, 2, 21, 28, 0, 1, 8, 27, 6, 9, 13, 24, 19, 4, 14, 26, 17, 22, 18, 11, 7, 12, 3, 15
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2002

Keywords

Crossrefs

Cf. A008960.

Programs

Formula

a(n) = a(n-29). - G. C. Greubel, Mar 30 2016

A070493 a(n) = n^3 mod 31.

Original entry on oeis.org

0, 1, 8, 27, 2, 1, 30, 2, 16, 16, 8, 29, 23, 27, 16, 27, 4, 15, 4, 8, 2, 23, 15, 15, 29, 1, 30, 29, 4, 23, 30, 0, 1, 8, 27, 2, 1, 30, 2, 16, 16, 8, 29, 23, 27, 16, 27, 4, 15, 4, 8, 2, 23, 15, 15, 29, 1, 30, 29, 4, 23, 30, 0, 1, 8, 27, 2, 1, 30, 2, 16, 16, 8, 29, 23, 27, 16, 27, 4, 15, 4
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2002

Keywords

Crossrefs

Cf. A008960.

Programs

Formula

a(n) = a(n-31). - G. C. Greubel, Mar 30 2016

A070499 a(n) = n^3 mod 37.

Original entry on oeis.org

0, 1, 8, 27, 27, 14, 31, 10, 31, 26, 1, 36, 26, 14, 6, 8, 26, 29, 23, 14, 8, 11, 29, 31, 23, 11, 1, 36, 11, 6, 27, 6, 23, 10, 10, 29, 36, 0, 1, 8, 27, 27, 14, 31, 10, 31, 26, 1, 36, 26, 14, 6, 8, 26, 29, 23, 14, 8, 11, 29, 31, 23, 11, 1, 36, 11, 6, 27, 6, 23, 10, 10, 29, 36, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2002

Keywords

Crossrefs

Cf. A008960.

Programs

Formula

a(n) = a(n-37). - G. C. Greubel, Mar 30 2016
Showing 1-10 of 15 results. Next