cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A009965 Powers of 21.

Original entry on oeis.org

1, 21, 441, 9261, 194481, 4084101, 85766121, 1801088541, 37822859361, 794280046581, 16679880978201, 350277500542221, 7355827511386641, 154472377739119461, 3243919932521508681, 68122318582951682301, 1430568690241985328321, 30041942495081691894741, 630880792396715529789561, 13248496640331026125580781, 278218429446951548637196401
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 21), L(1, 21), P(1, 21), T(1, 21). Essentially same as Pisot sequences E(21, 441), L(21, 441), P(21, 441), T(21, 441). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 21-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011

Crossrefs

Row 10 of A329332.

Programs

Formula

For A009966..A009992 we have g.f.: 1/(1-qx), e.g.f.: exp(qx), with q = 21, 22, ..., 48. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 07 2001
a(n) = 21^n; a(n) = 21*a(n-1), n > 0, a(0)=1. - Vincenzo Librandi, Nov 21 2010
G.f.: 22/G(0) where G(k) = 1 - 2*x*(k+1)/(1 - 1/(1 - 2*x*(k+1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 10 2013

A072978 Numbers of the form m*2^Omega(m), where m>1 is odd and Omega(m)=A001222(m), the number of prime factors of m.

Original entry on oeis.org

1, 6, 10, 14, 22, 26, 34, 36, 38, 46, 58, 60, 62, 74, 82, 84, 86, 94, 100, 106, 118, 122, 132, 134, 140, 142, 146, 156, 158, 166, 178, 194, 196, 202, 204, 206, 214, 216, 218, 220, 226, 228, 254, 260, 262, 274, 276, 278, 298, 302, 308, 314, 326, 334, 340, 346
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2002

Keywords

Comments

(number of odd prime factors) = (number of even prime factors).
A000400, A011557, A001023, A001024, A009965, A009966 and A009975 are subsequences. - Reinhard Zumkeller, Jan 06 2008
Subsequence of A028260. - Reinhard Zumkeller, Sep 20 2008

Crossrefs

Programs

  • Mathematica
    Join[{1}, Select[Range[2, 500, 2], First[#] == Total[Rest[#]] & [FactorInteger[#][[All, 2]]] &]] (* Paolo Xausa, Feb 19 2025 *)
  • PARI
    isok(k) = {my(v = valuation(k, 2)); bigomega(k >> v) == v;} \\ Amiram Eldar, May 15 2025
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A072978(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def h(x,n): return sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,1,3,1,n))
        def f(x): return int(n+x-primepi(x>>1)-sum(h(x>>m,m) for m in range(2,x.bit_length()+1))) if x>1 else 1
        return bisection(f,n,n) # Chai Wah Wu, Apr 10 2025
    

Formula

A007814(a(n)) = A087436(a(n)). - Reinhard Zumkeller, Jan 06 2008

A100402 Digital root of 4^n.

Original entry on oeis.org

1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7, 1, 4, 7
Offset: 0

Views

Author

Cino Hilliard, Dec 31 2004

Keywords

Comments

Equals A141725 mod 9. - Paul Curtz, Sep 15 2008
Sequence is the digital root of A016777. - Odimar Fabeny, Sep 13 2010
Digital root of the powers of any number congruent to 4 mod 9. - Alonso del Arte, Jan 26 2014
Period 3: repeat [1, 4, 7]. - Wesley Ivan Hurt, Aug 26 2014
From Timothy L. Tiffin, Dec 02 2023: (Start)
The period 3 digits of this sequence are the same as those of A070403 (digital root of 7^n) but the order is different: [1, 4, 7] vs. [1, 7, 4].
The digits in this sequence appear in the decimal expansions of the following rational numbers: 49/333, 490/333, 4900/333, .... (End)

Examples

			4^2 = 16, digitalroot(16) = 7, the third entry.
		

References

  • Cecil Balmond, Number 9: The Search for the Sigma Code. Munich, New York: Prestel (1998): 203.

Crossrefs

Cf. Digital roots of powers of c mod 9: c = 2, A153130; c = 5, A070366; c = 7, A070403; c = 8, A010689.

Programs

Formula

a(n) = 4^n mod 9. - Zerinvary Lajos, Nov 25 2009
From R. J. Mathar, Apr 13 2010: (Start)
a(n) = a(n-3) for n>2.
G.f.: (1+4*x+7*x^2)/ ((1-x)*(1+x+x^2)). (End)
a(n) = A010888(A000302(n)). - Michel Marcus, Aug 25 2014
a(n) = 3*A010872(n) + 1. - Robert Israel, Aug 25 2014
a(n) = 4 - 3*cos(2*n*Pi/3) - sqrt(3)*sin(2*n*Pi/3). - Wesley Ivan Hurt, Jun 30 2016
a(n) = A153130(2n). - Timothy L. Tiffin, Dec 01 2023
a(n) = A010888(A001022(n)) = A010888(A009966(n)) = A010888(A009975(n)) = A010888(A009984(n)) = A010888(A087752(n)) = A010888(A121013(n)). - Timothy L. Tiffin, Dec 02 2023
a(n) = A010888(4*a(n-1)). - Stefano Spezia, Mar 20 2025

A009988 Powers of 44.

Original entry on oeis.org

1, 44, 1936, 85184, 3748096, 164916224, 7256313856, 319277809664, 14048223625216, 618121839509504, 27197360938418176, 1196683881290399744, 52654090776777588736, 2316779994178213904384, 101938319743841411792896, 4485286068729022118887424, 197352587024076973231046656
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 44), L(1, 44), P(1, 44), T(1, 44). Essentially same as Pisot sequences E(44, 1936), L(44, 1936), P(44, 1936), T(44, 1936). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 44-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011

Crossrefs

Programs

Formula

G.f.: 1/(1-44*x). - Philippe Deléham, Nov 24 2008
a(n) = 44^n; a(n) = 44*a(n-1), a(0)=1. - Vincenzo Librandi, Nov 21 2010
From Elmo R. Oliveira, Jul 08 2025: (Start)
E.g.f.: exp(44*x).
a(n) = A000079(n)*A009966(n) = A000302(n)*A001020(n). (End)

A013727 a(n) = 22^(2*n + 1).

Original entry on oeis.org

22, 10648, 5153632, 2494357888, 1207269217792, 584318301411328, 282810057883082752, 136880068015412051968, 66249952919459433152512, 32064977213018365645815808, 15519448971100888972574851072, 7511413302012830262726227918848, 3635524038174209847159494312722432
Offset: 0

Views

Author

Keywords

Crossrefs

Bisection of A009966 (22^n).

Programs

Formula

From Philippe Deléham, Nov 28 2008: (Start)
a(n) = 484*a(n-1); a(0)=22.
G.f.: 22/(1-484*x). (End)
From Elmo R. Oliveira, Jul 10 2025: (Start)
E.g.f.: 22*exp(484*x).
a(n) = A004171(n)*A013716(n) = A009966(A005408(n)). (End)

A180729 Smallest power of 22 that begins with n.

Original entry on oeis.org

1, 22, 3011361496339065143296, 484, 5153632, 6221821273427820544, 705429498686404044207947776, 851643319086537701956194499721106030592, 9068298061633453450429559033030337013743616, 10648, 113379904
Offset: 1

Views

Author

Daniel Mondot, Sep 18 2010

Keywords

Crossrefs

A013770 a(n) = 22^(3*n + 1).

Original entry on oeis.org

22, 234256, 2494357888, 26559922791424, 282810057883082752, 3011361496339065143296, 32064977213018365645815808, 341427877364219557396646723584, 3635524038174209847159494312722432, 38711059958478986452554295441868455936
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A009966.

Programs

A013771 a(n) = 22^(3*n + 2).

Original entry on oeis.org

484, 5153632, 54875873536, 584318301411328, 6221821273427820544, 66249952919459433152512, 705429498686404044207947776, 7511413302012830262726227918848, 79981528839832616637508874879893504, 851643319086537701956194499721106030592
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A009966.

Programs

A013816 a(n) = 22^(4*n+1).

Original entry on oeis.org

22, 5153632, 1207269217792, 282810057883082752, 66249952919459433152512, 15519448971100888972574851072, 3635524038174209847159494312722432, 851643319086537701956194499721106030592, 199502557355935975909450298726667414302359552
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A009966.

Programs

A013902 a(n) = 22^(5*n + 1).

Original entry on oeis.org

22, 113379904, 584318301411328, 3011361496339065143296, 15519448971100888972574851072, 79981528839832616637508874879893504, 412195366437884247746798137865015318806528, 2124303230726006271483826780841554627491524509696, 10947877107572929152919737180202022857988400441953615872
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A009966.

Programs

  • Magma
    [22^(5*n+1): n in [0..10]]; // Vincenzo Librandi, May 28 2011
  • Mathematica
    22^(5Range[0,10]+1) (* or *) LinearRecurrence[{5153632},{22},10] (* Harvey P. Dale, Feb 28 2012 *)

Formula

a(n) = 5153632*a(n-1), a(0)=22. - Vincenzo Librandi, May 28 2011
G.f.: 22/(1 - 5153632*x). - Wesley Ivan Hurt, May 25 2024
Showing 1-10 of 13 results. Next