cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A248240 Egyptian fraction representation of sqrt(11) (A010468) using a greedy function.

Original entry on oeis.org

3, 4, 16, 243, 104559, 25176928409, 26586186736052347315834, 1862816215759124563815793524962166009780011752, 5214712907768239185916350444296489272388117885310572145230445264540008760076034857528421553
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 11]]

A041014 Numerators of continued fraction convergents to sqrt(11).

Original entry on oeis.org

3, 10, 63, 199, 1257, 3970, 25077, 79201, 500283, 1580050, 9980583, 31521799, 199111377, 628855930, 3972246957, 12545596801, 79245827763, 250283080090, 1580944308303, 4993116004999, 31539640338297
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010468, A041015 (denominators).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041006 (m=6), A041008 (m=7), A041010 (m=8), A005667 (m=10), A041016 (m=12), ..., A042936 (m=1000).

Programs

  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[11],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
    Numerator[Convergents[Sqrt[11], 30]] (* Vincenzo Librandi, Oct 28 2013 *)
  • PARI
    A041014=contfracpnqn(c=contfrac(sqrt(11)), #c)[1,][^-1] \\ Discard last element which may be incorrect. Use e.g. \p999 to get more terms, or extend as follows:
    {A041014_upto(N,A=Vec(A041014,N))=for(n=#A041014+1,N, A[n]=20*A[n-2]-A[n-4]); A041014=A} \\ M. F. Hasler, Nov 01 2019

Formula

G.f.: (3 + 10*x + 3*x^2 - x^3)/(1 - 20*x^2 + x^4).

A041015 Denominators of continued fraction convergents to sqrt(11).

Original entry on oeis.org

1, 3, 19, 60, 379, 1197, 7561, 23880, 150841, 476403, 3009259, 9504180, 60034339, 189607197, 1197677521, 3782639760, 23893516081, 75463188003, 476672644099, 1505481120300, 9509559365899, 30034159217997
Offset: 0

Views

Author

Keywords

Comments

Sqrt(11) = 3 + continued fraction [3, 6, 3, 6, 3, 6, ...] = 6/2 + 6/19 + 6/(19*379) + 6/(379*7561) + ... - Gary W. Adamson, Dec 21 2007
Let X = the 2 X 2 matrix [1, 6; 3, 19], then X^n * [1, 0] = [a(n+1), a(n+2)]; e.g., X^3 * [1, 0] = [379, 1197] = [a(4), a(5)]. - Gary W. Adamson, Dec 21 2007

Crossrefs

Programs

  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[11],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
    a0[n_] := (11+3*Sqrt[11]+(11-3*Sqrt[11])*(10+3*Sqrt[11])^(2*n))/(22*(10+3*Sqrt[11])^n) // Simplify
    a1[n_] := 3*Sum[a0[i], {i, 1, n}]
    Flatten[MapIndexed[{a0[#], a1[#]}&,Range[11]]] (* Gerry Martens, Jul 10 2015 *)

Formula

G.f.: (1+3*x-x^2)/(1-20*x^2+x^4). - Colin Barker, Dec 31 2011
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)]:
a0(n) = ((11+3*sqrt(11))/(10+3*sqrt(11))^n + (11-3*sqrt(11))*(10+3*sqrt(11))^n)/22.
a1(n) = 3*Sum_{i=1..n} a0(i). (End)

A378204 Decimal expansion of the surface area of a triakis tetrahedron with unit shorter edge length.

Original entry on oeis.org

5, 5, 2, 7, 7, 0, 7, 9, 8, 3, 9, 2, 5, 6, 6, 6, 4, 1, 5, 1, 9, 1, 5, 5, 4, 5, 6, 1, 1, 1, 7, 8, 1, 1, 1, 3, 9, 8, 7, 8, 4, 8, 0, 9, 0, 9, 3, 1, 5, 5, 8, 9, 3, 2, 8, 4, 3, 1, 1, 3, 6, 9, 1, 0, 1, 9, 4, 1, 4, 1, 0, 7, 1, 0, 1, 5, 0, 7, 3, 0, 7, 7, 8, 4, 8, 0, 7, 2, 3, 3
Offset: 1

Views

Author

Paolo Xausa, Nov 20 2024

Keywords

Comments

The triakis tetrahedron is the dual polyhedron of the truncated tetrahedron.

Examples

			5.5277079839256664151915545611178111398784809093...
		

Crossrefs

Cf. A378205 (volume), A378206 (inradius), A378207 (midradius), A378208 (dihedral angle).
Cf. A377274 (surface area of a truncated tetrahedron with unit edge).
Cf. A010468.

Programs

  • Mathematica
    First[RealDigits[5*Sqrt[11]/3, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TriakisTetrahedron", "SurfaceArea"], 10, 100]]

Formula

Equals (5/3)*sqrt(11) = (5/3)*A010468.

A176221 Decimal expansion of sqrt(110).

Original entry on oeis.org

1, 0, 4, 8, 8, 0, 8, 8, 4, 8, 1, 7, 0, 1, 5, 1, 5, 4, 6, 9, 9, 1, 4, 5, 3, 5, 1, 3, 6, 7, 9, 9, 3, 7, 5, 9, 8, 4, 7, 5, 2, 7, 1, 8, 5, 7, 6, 8, 1, 5, 0, 3, 9, 8, 4, 8, 7, 5, 7, 5, 5, 7, 6, 3, 5, 8, 0, 0, 0, 5, 9, 2, 5, 5, 0, 1, 1, 0, 0, 6, 9, 1, 4, 1, 9, 3, 8, 5, 2, 8, 8, 9, 3, 3, 1, 9, 4, 4, 1, 7, 8, 0, 3, 9, 6
Offset: 2

Views

Author

Klaus Brockhaus, Apr 12 2010

Keywords

Comments

Continued fraction expansion of sqrt(110) is A040099.

Examples

			sqrt(110) = 10.48808848170151546991...
		

Crossrefs

Cf. A010467 (decimal expansion of sqrt(10)), A010468 (decimal expansion of sqrt(11)), A040099.

Programs

Formula

Equals 10 * Sum_{k>=0} binomial(2*k,k)/44^k. - Amiram Eldar, Aug 04 2022

A010498 Decimal expansion of square root of 44.

Original entry on oeis.org

6, 6, 3, 3, 2, 4, 9, 5, 8, 0, 7, 1, 0, 7, 9, 9, 6, 9, 8, 2, 2, 9, 8, 6, 5, 4, 7, 3, 3, 4, 1, 3, 7, 3, 3, 6, 7, 8, 5, 4, 1, 7, 7, 0, 9, 1, 1, 7, 8, 7, 0, 7, 1, 9, 4, 1, 1, 7, 3, 6, 4, 2, 9, 2, 2, 3, 2, 9, 6, 9, 2, 8, 5, 2, 1, 8, 0, 8, 7, 6, 9, 3, 4, 1, 7, 6, 8, 6, 7, 9, 8, 2, 5, 6, 5, 8, 1, 3, 0
Offset: 1

Views

Author

Keywords

Comments

Continued fraction expansion is 6 followed by {1, 1, 1, 2, 1, 1, 1, 12} repeated. [Harry J. Smith, Jun 05 2009]

Examples

			6.633249580710799698229865473341373367854177091178707194117364292232969...
		

Crossrefs

Cf. A040037 (continued fraction).

Programs

  • Mathematica
    RealDigits[N[Sqrt[44],200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 24 2011 *)
  • PARI
    { default(realprecision, 20080); x=sqrt(44); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010498.txt", n, " ", d)); } \\ Harry J. Smith, Jun 05 2009

Formula

Equals 2*A010468. - R. J. Mathar, Jan 14 2021

A123482 Coefficients of the series giving the best rational approximations to sqrt(11).

Original entry on oeis.org

60, 23940, 9528120, 3792167880, 1509273288180, 600686976527820, 239071907384784240, 95150018452167599760, 37869468272055319920300, 15071953222259565160679700, 5998599512991034878630600360, 2387427534217209622129818263640, 950190160018936438572789038328420
Offset: 1

Views

Author

Gene Ward Smith, Oct 02 2006

Keywords

Comments

The partial sums of the series 10/3 - 1/a(1) - 1/a(2) - 1/a(3) - ... give the best rational approximations to sqrt(11), which constitute every second convergent of the continued fraction. The corresponding continued fractions are [3;3,6,3], [3;3,6,3,6,3], [3;3,6,3,6,3,6,3] and so forth.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-60*x/((x - 1)*(x^2 - 398*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 13 2017 *)
  • PARI
    Vec(-60*x/((x-1)*(x^2-398*x+1)) + O(x^100)) \\ Colin Barker, Jun 23 2014

Formula

a(n+3) = 399*a(n+2) - 399*a(n+1) + a(n).
a(n) = -5/33 + (5/66 + 1/44*11^(1/2))*(199 + 60*11^(1/2))^n + (5/66 - 1/44*11^(1/2))*(199 - 60*11^(1/2))^n.
G.f.: -60*x / ((x-1)*(x^2-398*x+1)). - Colin Barker, Jun 23 2014

Extensions

More terms from Colin Barker, Jun 23 2014

A177934 Decimal expansion of sqrt(71216963807).

Original entry on oeis.org

2, 6, 6, 8, 6, 5, 0, 6, 6, 6, 6, 6, 6, 5, 8, 3, 3, 9, 5, 2, 8, 7, 2, 3, 9, 6, 2, 5, 7, 5, 1, 6, 2, 6, 1, 3, 0, 0, 5, 2, 1, 5, 9, 5, 9, 8, 0, 8, 1, 3, 7, 4, 6, 5, 9, 5, 8, 9, 9, 4, 3, 9, 9, 1, 5, 9, 0, 9, 6, 5, 3, 5, 0, 6, 7, 8, 3, 5, 1, 1, 4, 2, 0, 4, 4, 2, 3, 3, 6, 9, 1, 0, 8, 2, 1, 4, 5, 3, 0, 0, 8, 4, 7, 6, 7
Offset: 6

Views

Author

Klaus Brockhaus, May 15 2010

Keywords

Comments

Continued fraction expansion of sqrt(71216963807) is 266865 followed by (repeat 15, 533730).
sqrt(71216963807) = sqrt(11)*sqrt(19)*sqrt(107)*sqrt(179)*sqrt(17791).

Examples

			sqrt(71216963807) = 266865.06666665833952872396...
		

Crossrefs

Cf. A010468 (decimal expansion of sqrt(11)), A010475 (decimal expansion of sqrt(19)), A177935 (decimal expansion of sqrt(107)), A177936 (decimal expansion of sqrt(179)), A177937 (decimal expansion of sqrt(17791)), A177933 (decimal expansion of (232405+sqrt(71216963807))/348378).

Programs

  • Mathematica
    RealDigits[Sqrt[71216963807],10,120][[1]] (* Harvey P. Dale, Jul 31 2021 *)

A194387 Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - ) < 0, where r=sqrt(11) and < > denotes fractional part.

Original entry on oeis.org

3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 25, 27, 28, 29, 31, 47, 49, 50, 51, 53, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 75, 85, 87, 88, 89, 91, 107, 109, 110, 111, 113, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 145, 147, 148, 149, 151, 167, 169, 170
Offset: 1

Views

Author

Clark Kimberling, Aug 23 2011

Keywords

Comments

See A194368.

Crossrefs

Programs

  • Mathematica
    r = Sqrt[11]; c = 1/2;
    x[n_] := Sum[FractionalPart[k*r], {k, 1, n}]
    y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}]
    t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 200}];
    Flatten[Position[t1, 1]]     (* A194387 *)
    t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 200}];
    Flatten[Position[t2, 1]]     (* A194388 *)
    t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 200}];
    Flatten[Position[t3, 1]]     (* A194389 *)

A194388 Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - ) = 0, where r=sqrt(11) and < > denotes fractional part.

Original entry on oeis.org

2, 4, 14, 16, 18, 22, 24, 26, 30, 32, 34, 44, 46, 48, 52, 54, 56, 60, 62, 64, 74, 76, 78, 82, 84, 86, 90, 92, 94, 104, 106, 108, 112, 114, 116, 120, 122, 124, 134, 136, 138, 142, 144, 146, 150, 152, 154, 164, 166, 168, 172, 174, 176, 180, 182, 184, 194, 196
Offset: 1

Views

Author

Clark Kimberling, Aug 23 2011

Keywords

Comments

Every term is even; see A194368.

Crossrefs

Programs

  • Mathematica
    r = Sqrt[11]; c = 1/2;
    x[n_] := Sum[FractionalPart[k*r], {k, 1, n}]
    y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}]
    t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 200}];
    Flatten[Position[t1, 1]]     (* A194387 *)
    t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 200}];
    Flatten[Position[t2, 1]]     (* A194388 *)
    t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 200}];
    Flatten[Position[t3, 1]]     (* A194389 *)
Showing 1-10 of 29 results. Next