cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A040011 Continued fraction for sqrt(15).

Original entry on oeis.org

3, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6
Offset: 0

Views

Author

Keywords

Comments

Decimal expansion of 313/990. - R. J. Mathar, Aug 22 2025

Examples

			3.872983346207416885179265399... = 3 + 1/(1 + 1/(6 + 1/(1 + 1/(6 + ...)))). - _Harry J. Smith_, Jun 03 2009
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010472 (decimal expansion). A010687.

Programs

  • Maple
    Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[15],300] (* Vladimir Joseph Stephan Orlovsky, Mar 05 2011 *)
    PadRight[{3},120,{6,1}] (* Harvey P. Dale, Apr 14 2020 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 19000); x=contfrac(sqrt(15)); for (n=0, 20000, write("b040011.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 03 2009

Formula

From Amiram Eldar, Nov 12 2023: (Start)
Multiplicative with a(2^e) = 6, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 5/2^s). (End)
G.f.: (3 + x + 3*x^2)/(1 - x^2). - Stefano Spezia, Jul 26 2025

A047335 Numbers that are congruent to {0, 6} mod 7.

Original entry on oeis.org

0, 6, 7, 13, 14, 20, 21, 27, 28, 34, 35, 41, 42, 48, 49, 55, 56, 62, 63, 69, 70, 76, 77, 83, 84, 90, 91, 97, 98, 104, 105, 111, 112, 118, 119, 125, 126, 132, 133, 139, 140, 146, 147, 153, 154, 160, 161, 167, 168
Offset: 1

Views

Author

Keywords

References

  • Hsien-Kuei Hwang, S Janson, TH Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, Preprint, 2016; http://140.109.74.92/hk/wp-content/files/2016/12/aat-hhrr-1.pdf. Also Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585

Crossrefs

Cf. A274406.

Programs

  • Mathematica
    Select[Range[0,200],MemberQ[{0,6},Mod[#,7]]&]  (* Harvey P. Dale, Mar 16 2011 *)

Formula

From Bruno Berselli, Oct 06 2010: (Start)
G.f.: x^2*(6+x)/((1+x)*(1-x)^2).
a(n) - a(n-1) - a(n-2) + a(n-3) = 0 (n > 3).
a(n) = (14*n + 5*(-1)^n - 9)/4.
a(n) - a(n-2) = 7 (n > 2).
a(n) - a(n-1) = A010687(k) with n > 1 and k == n-1 (mod 2). (End)
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=6 and b(k) = 7*2^(k-1) = A005009(k-1) for k > 0. - Philippe Deléham, Oct 18 2011

A176016 Decimal expansion of (3+sqrt(15))/6.

Original entry on oeis.org

1, 1, 4, 5, 4, 9, 7, 2, 2, 4, 3, 6, 7, 9, 0, 2, 8, 1, 4, 1, 9, 6, 5, 4, 4, 2, 3, 3, 2, 9, 7, 0, 6, 6, 6, 0, 1, 8, 0, 5, 4, 8, 6, 9, 5, 0, 8, 8, 1, 9, 3, 1, 8, 0, 4, 4, 3, 1, 2, 6, 2, 2, 9, 4, 3, 5, 2, 2, 4, 7, 1, 8, 1, 9, 8, 9, 4, 9, 6, 5, 0, 5, 5, 8, 6, 5, 4, 7, 8, 9, 6, 1, 4, 3, 1, 1, 2, 2, 5, 2, 9, 8, 6, 0, 5
Offset: 1

Views

Author

Klaus Brockhaus, Apr 06 2010

Keywords

Comments

Continued fraction expansion of (3+sqrt(15))/6 is A010687.

Examples

			(3+sqrt(15))/6 = 1.14549722436790281419...
		

Crossrefs

Cf. A010472 (sqrt(15)), A176020 ((3+sqrt(15))/3), A010687 (repeat 1, 6).

Programs

  • Mathematica
    RealDigits[(3+Sqrt[15])/6,10,120][[1]] (* Harvey P. Dale, May 01 2012 *)

Formula

Equals 1/2+A140246. - R. J. Mathar, Mar 17 2025

A146533 Catalan transform of A135092.

Original entry on oeis.org

1, 7, 21, 70, 245, 882, 3234, 12012, 45045, 170170, 646646, 2469012, 9464546, 36402100, 140408100, 542911320, 2103781365, 8167621770, 31762973550, 123708423300, 482462850870, 1883902560540, 7364346373020, 28817007546600, 112866612890850, 442437122532132, 1735714865318364
Offset: 0

Views

Author

Philippe Deléham, Oct 31 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=(7*Binomial[2n,n]-5*KroneckerDelta[n,0])/2; Array[a,27,0] (* Stefano Spezia, Feb 14 2025 *)

Formula

a(n) = Sum_{k=0..n} A039599(n,k)*A010687(k) = Sum_{k=0..n} A106566(n,k)*A135092(k).
a(n) = (7*C(2n,n) - 5*0^n)/2.
From Stefano Spezia, Feb 14 2025: (Start)
G.f.: (7/sqrt(1 - 4*x) - 5)/2.
E.g.f.: (7*exp(2*x)*BesselI(0, 2*x) - 5)/2. (End)

Extensions

a(23)-a(26) from Stefano Spezia, Feb 14 2025

A081193 a(n) = 6*a(n-1)-8*a(n-2) for n>1, a(0)=1, a(1)=9.

Original entry on oeis.org

1, 9, 46, 204, 856, 3504, 14176, 57024, 228736, 916224, 3667456, 14674944, 58710016, 234860544, 939483136, 3758014464, 15032221696, 60129214464, 240517513216, 962071363584, 3848288075776, 15393157545984, 61572640669696
Offset: 0

Views

Author

Paul Barry, Mar 11 2003

Keywords

Comments

Third binomial transform of A010687 (period 2: repeat 1,6). [Bruno Berselli, Aug 06 2013]

Programs

  • Magma
    [7*4^n/2-5*2^n/2: n in [0..25]]; // Vincenzo Librandi, Aug 07 2013
  • Mathematica
    CoefficientList[Series[(1 + 3 x)/((1 - 2 x) (1 - 4 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 07 2013 *)

Formula

G.f.: (1+3*x)/((1-2*x)*(1-4*x)).
a(n) = 7*4^n/2-5*2^n/2.

A173261 Array T(n,k) read by antidiagonals: T(n,2k)=1, T(n,2k+1)=n, n>=2, k>=0.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 1, 4, 1, 2, 1, 5, 1, 3, 1, 1, 6, 1, 4, 1, 2, 1, 7, 1, 5, 1, 3, 1, 1, 8, 1, 6, 1, 4, 1, 2, 1, 9, 1, 7, 1, 5, 1, 3, 1, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2, 1, 11, 1, 9, 1, 7, 1, 5, 1, 3, 1, 1, 12, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2, 1, 13, 1, 11, 1, 9, 1, 7, 1, 5, 1, 3, 1, 1, 14, 1, 12, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2
Offset: 2

Views

Author

Paul Curtz, Feb 14 2010

Keywords

Comments

One may define another array B(n,0) = -1, B(n,k) = T(n,k-1) + 2*B(n,k-1), n>=2, which also starts in columns k>=0, as follows:
-1, -1, 0, 1, 4, 9, 20, 41, 84, 169, 340, 681, 1364 ...: A084639;
-1, -1, 1, 3, 9, 19, 41, 83, 169, 339, 681, 1363, 2729;
-1, -1, 2, 5, 14, 29, 62, 125, 254, 509, 1022, 2045, 4094;
-1, -1, 3, 7, 19, 39, 83, 167, 339, 679, 1363, 2727, 5459 ...: -A173114;
B(n,k) = (n-1)*A001045(k) - T(n,k).
First differences are B(n,k+1) - B(n,k) = (n-1)*A001045(k).

Examples

			The array T(n,k) starts in row n=2 with columns k>=0 as:
  1,  2, 1,  2, 1,  2, 1,  2, 1,  2, 1,  2 ... A000034;
  1,  3, 1,  3, 1,  3, 1,  3, 1,  3, 1,  3 ... A010684;
  1,  4, 1,  4, 1,  4, 1,  4, 1,  4, 1,  4 ... A010685;
  1,  5, 1,  5, 1,  5, 1,  5, 1,  5, 1,  5 ... A010686;
  1,  6, 1,  6, 1,  6, 1,  6, 1,  6, 1,  6 ... A010687;
  1,  7, 1,  7, 1,  7, 1,  7, 1,  7, 1,  7 ... A010688;
  1,  8, 1,  8, 1,  8, 1,  8, 1,  8, 1,  8 ... A010689;
  1,  9, 1,  9, 1,  9, 1,  9, 1,  9, 1,  9 ... A010690;
  1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10 ... A010691.
Antidiagonal triangle begins as:
  1;
  1,  2;
  1,  3,  1;
  1,  4,  1,  2;
  1,  5,  1,  3,  1;
  1,  6,  1,  4,  1,  2;
  1,  7,  1,  5,  1,  3,  1;
  1,  8,  1,  6,  1,  4,  1,  2;
  1,  9,  1,  7,  1,  5,  1,  3,  1;
  1, 10,  1,  8,  1,  6,  1,  4,  1,  2;
  1, 11,  1,  9,  1,  7,  1,  5,  1,  3,  1;
  1, 12,  1, 10,  1,  8,  1,  6,  1,  4,  1,  2;
  1, 13,  1, 11,  1,  9,  1,  7,  1,  5,  1,  3,  1;
  1, 14,  1, 12,  1, 10,  1,  8,  1,  6,  1,  4,  1,  2;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= (1/2)*((n+3) - (n+1)*(-1)^k);
    Table[T[n-k, k], {n,2,17}, {k,2,n}]//Flatten (* G. C. Greubel, Dec 03 2021 *)
  • Sage
    flatten([[(1/2)*((n-k+3) - (n-k+1)*(-1)^k) for k in (2..n)] for n in (2..17)]) # G. C. Greubel, Dec 03 2021

Formula

From G. C. Greubel, Dec 03 2021: (Start)
T(n, k) = (1/2)*((n+3) - (n+1)*(-1)^k).
Sum_{k=0..n} T(n-k, k) = A024206(n).
Sum_{k=0..floor((n+2)/2)} T(n-2*k+2, k) = (1/16)*(2*n^2 4*n -5*(1 +(-1)^n) + 4*sin(n*Pi/2)) (diagonal sums).
T(2*n-2, n) = A093178(n). (End)

A176355 Periodic sequence: Repeat 6, 1.

Original entry on oeis.org

6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6
Offset: 0

Views

Author

Klaus Brockhaus, Apr 15 2010

Keywords

Comments

Interleaving of A010722 and A000012.
Also continued fraction expansion of 3+sqrt(15).
Also decimal expansion of 61/99.
Essentially first differences of A047335.
Binomial transform of 6 followed by A166577 without initial terms 1, 4.
Inverse binomial transform of A005009 preceded by 6.

Examples

			0.6161616161616161616161616161616161616161...
		

Crossrefs

Cf. A010722 (all 6's sequence), A000012 (all 1's sequence), A092294 (decimal expansion of 3+sqrt(15)), A010687 (repeat 1, 6), A047335 (congruent to 0 or 6 mod 7), A166577, A005009 (7*2^n).

Programs

  • Magma
    &cat[ [6, 1]: n in [0..52] ];
    
  • Magma
    [(7+5*(-1)^n)/2: n in [0..104]];
  • Mathematica
    PadRight[{},120,{6,1}] (* Harvey P. Dale, Apr 12 2018 *)

Formula

G.f.: (6 + x)/(1 - x^2).
a(n) = (7 + 5*(-1)^n)/2.
a(n) = a(n-2) for n>1, a(0)=6, a(1)=1.
a(n) = -a(n-1)+7 for n>0, a(0)=6.
a(n) = 6*((n+1) mod 2) + (n mod 2).
a(n) = A010687(n+1).
a(n) = 13^n mod 7. - Vincenzo Librandi, Jun 01 2016
From Amiram Eldar, Jan 01 2023: (Start)
Multiplicative with a(2^e) = 6, and a(p^e) = 1 for p >= 3.
Dirichlet g.f.: zeta(s)*(1+5/2^s). (End)
E.g.f.: 6*cosh(x) + sinh(x). - Stefano Spezia, Feb 09 2025
Showing 1-7 of 7 results.