A171472 a(n) = 6*a(n-1) - 8*a(n-2) for n > 1; a(0) = 7, a(1) = 30.
7, 30, 124, 504, 2032, 8160, 32704, 130944, 524032, 2096640, 8387584, 33552384, 134213632, 536862720, 2147467264, 8589901824, 34359672832, 137438822400, 549755551744, 2199022731264, 8796091973632, 35184369991680
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (6,-8).
Programs
-
Magma
[8*4^n-2^n: n in [0..30]]; // Vincenzo Librandi, May 31 2011
-
Mathematica
LinearRecurrence[{6,-8},{7,30},30] (* Harvey P. Dale, Sep 01 2016 *)
-
PARI
{m=22; v=concat([7, 30], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]); v}
Formula
a(n) = 8*4^n-2^n.
G.f.: (7-12*x)/((1-2*x)*(1-4*x)).
a(n) = A171499(n+1)/2. - Hussam al-Homsi, Jun 06 2021
E.g.f.: exp(2*x)*(8*exp(2*x) - 1). - Stefano Spezia, Sep 27 2023
Comments