cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A171472 a(n) = 6*a(n-1) - 8*a(n-2) for n > 1; a(0) = 7, a(1) = 30.

Original entry on oeis.org

7, 30, 124, 504, 2032, 8160, 32704, 130944, 524032, 2096640, 8387584, 33552384, 134213632, 536862720, 2147467264, 8589901824, 34359672832, 137438822400, 549755551744, 2199022731264, 8796091973632, 35184369991680
Offset: 0

Views

Author

Klaus Brockhaus, Dec 09 2009

Keywords

Comments

Related to Reverse and Add trajectory of 22 in base 2: A061561(4*n+2) = 12*a(n).
Third binomial transform of A010729.
a(n) in base 2 is n+3 1s followed by n 0s. - Hussam al-Homsi, Oct 12 2021

Crossrefs

Cf. A061561, A010729 (repeat 7, 9), A171470, A171471, A171473, A171499.

Programs

  • Magma
    [8*4^n-2^n: n in [0..30]]; // Vincenzo Librandi, May 31 2011
  • Mathematica
    LinearRecurrence[{6,-8},{7,30},30] (* Harvey P. Dale, Sep 01 2016 *)
  • PARI
    {m=22; v=concat([7, 30], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]); v}
    

Formula

a(n) = 8*4^n-2^n.
G.f.: (7-12*x)/((1-2*x)*(1-4*x)).
a(n) = A171499(n+1)/2. - Hussam al-Homsi, Jun 06 2021
E.g.f.: exp(2*x)*(8*exp(2*x) - 1). - Stefano Spezia, Sep 27 2023

A306289 The smallest prime factor of numbers greater than 1 and coprime to 6.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 23, 5, 29, 31, 5, 37, 41, 43, 47, 7, 53, 5, 59, 61, 5, 67, 71, 73, 7, 79, 83, 5, 89, 7, 5, 97, 101, 103, 107, 109, 113, 5, 7, 11, 5, 127, 131, 7, 137, 139, 11, 5, 149, 151, 5, 157, 7, 163, 167, 13, 173, 5, 179, 181, 5, 11, 191, 193
Offset: 1

Views

Author

Davis Smith, Feb 03 2019

Keywords

Comments

a(n) is the least prime factor of the n-th number that is greater than 1 and congruent to 1 or 5 (mod 6).
a(n) = 5 when n is congruent to {1, 8} (mod 10) (n is a term in A017281, A017365, or A306277). a(n) = 7 when n is congruent to {2, 11} (mod 14) but not {1, 8} (mod 10). a(n) = 11 when n is congruent to {3, 18} (mod 22) but not a case where it equals 5 or 7. a(n) = 13 when n is congruent to {4, 21} (mod 26) (n is a term in A306285) but not a case where it equals 5, 7, or 11. a(n) = 17 when n is congruent to {5, 28} (mod 34) but not a case where it equals 5, 7, 11, or 13. a(n) = 19 when n is congruent to {6, 31} (mod 38) (n is a term in A306331) but not a case where it equals 5, 7, 11, 13, or 17.
Conjecture: This pattern continues indefinitely. a(n) = A007310(m + 1) when n is congruent to {m, A306277(m + 1)} (mod A091999(m + 1)) but not congruent to {k, A306277(k + 1)} (mod A091999(k + 1)), m > k >= 1. The indices of the first appearance of a number in this sequence supports this conjecture in that they are never, for m > 0, congruent to A306277(m + 1) mod A091999(m + 1).

Examples

			a(n) is the least term, other than 0, in n-th row of the array A(m,n), where A(m,n) is A007310(m + 1) when A007310(n + 1) mod A007310(m + 1) is congruent to 0, otherwise 0.
Table begins
  \m  1 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 ...
  n\
   1| 5 0  0  0  0  0  0  0  0   0   0   0   0   0   0   0 ...
   2| 0 7  0  0  0  0  0  0  0   0   0   0   0   0   0   0 ...
   3| 0 0 11  0  0  0  0  0  0   0   0   0   0   0   0   0 ...
   4| 0 0  0 13  0  0  0  0  0   0   0   0   0   0   0   0 ...
   5| 0 0  0  0 17  0  0  0  0   0   0   0   0   0   0   0 ...
   6| 0 0  0  0  0 19  0  0  0   0   0   0   0   0   0   0 ...
   7| 0 0  0  0  0  0 23  0  0   0   0   0   0   0   0   0 ...
   8| 5 0  0  0  0  0  0 25  0   0   0   0   0   0   0   0 ...
   9| 0 0  0  0  0  0  0  0 29   0   0   0   0   0   0   0 ...
  10| 0 0  0  0  0  0  0  0  0  31   0   0   0   0   0   0 ...
  11| 5 7  0  0  0  0  0  0  0   0  35   0   0   0   0   0 ...
  12| 0 0  0  0  0  0  0  0  0   0   0  37   0   0   0   0 ...
  13| 0 0  0  0  0  0  0  0  0   0   0   0  41   0   0   0 ...
  14| 0 0  0  0  0  0  0  0  0   0   0   0   0  43   0   0 ...
  15| 0 0  0  0  0  0  0  0  0   0   0   0   0   0  47   0 ...
  16| 0 7  0  0  0  0  0  0  0   0   0   0   0   0   0  49 ...
For the n-th row of this square array, the leftmost terms, other than 0, are the factors of A(n,n). A(n,n) = A007310(n + 1). If for every m, m < n, A(m,n) = 0, then a(n) = A007310(n + 1) and A007310(n + 1) is prime.
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1976), Part Eight, Chap. 2, Section 2, Problems 96 and 105.

Crossrefs

Programs

  • Maple
    seq(min(op(numtheory[factorset] (6*ceil(n/2)+(-1)^n))), n=1..64) ;
  • Mathematica
    FactorInteger[Rest@ Flatten@ Array[6 # + {1, 5} &, 33, 0]][[All, 1, 1]] (* Michael De Vlieger, Feb 15 2019 *)
    FactorInteger[#][[1,1]]&/@Select[Range[2,200],CoprimeQ[#,6]&] (* Harvey P. Dale, Jul 10 2020 *)
  • PARI
    for(n=2, 211, if((n%6==1)||(n%6==5), print1(factor(n)[1,1], ", ")))
    
  • PARI
    vector(64,n,factor(6*ceil(n/2)+(-1)^n)[1,1])
    
  • PARI
    a(n) = n++; factor(n\2*6-(-1)^n)[1,1]; \\ Michel Marcus, Feb 06 2019

Formula

a(n) = A020639(A007310(n + 1)).
a(n) = A020639(3n + A000034(n + 1)).
a(n) = A020639(6*ceiling(n/2) + (-1)^n).
a(floor(prime(n + 2)/3)) = prime(n + 2).

A173512 a(n) = 8*n + 4 + n mod 2.

Original entry on oeis.org

4, 13, 20, 29, 36, 45, 52, 61, 68, 77, 84, 93, 100, 109, 116, 125, 132, 141, 148, 157, 164, 173, 180, 189, 196, 205, 212, 221, 228, 237, 244, 253, 260, 269, 276, 285, 292, 301, 308, 317, 324, 333, 340, 349, 356, 365, 372, 381, 388, 397, 404, 413, 420, 429, 436
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 20 2010

Keywords

Comments

First differences of A173511;
a(n+1) - a(n) = A010729(n+1).

Programs

Formula

G.f.: (4 + 9*x + 3*x^2)/((1 + x)*(1 - x)^2). - Philippe Deléham, Nov 29 2016

A134965 a(1)=3, a(n) = a(n-1) + 7 + 2*mod(n-1, 2) for n>=2.

Original entry on oeis.org

3, 12, 19, 28, 35, 44, 51, 60, 67, 76, 83, 92, 99, 108, 115, 124, 131, 140, 147, 156, 163, 172, 179, 188, 195, 204, 211, 220, 227, 236, 243, 252, 259, 268, 275, 284, 291, 300, 307, 316, 323, 332, 339, 348, 355, 364, 371, 380, 387, 396, 403, 412, 419, 428
Offset: 1

Views

Author

Roger L. Bagula, Jan 31 2008

Keywords

Comments

Starting weights for pyramid game.
Numbers n such that the equation m(m + 1)/2 + 1 - n == 0 mod m has a solution.
Numbers congruent to {3, 12} mod 16. - Philippe Deléham, Nov 28 2016

Programs

  • Mathematica
    Flatten[Table[If[ IntegerQ[2*Sqrt[ -7 + 8*n]] && Mod[n - 7, 8] == 0, f[n], {}], {n, 1, 10000}]]
    LinearRecurrence[{1,1,-1},{3,12,19},60] (* Harvey P. Dale, Oct 05 2017 *)
  • PARI
    Vec(x*(3 + 9*x + 4*x^2) / ((1 - x)^2 * (1 + x)) + O(x^100)) \\ Colin Barker, Nov 29 2016
    
  • PARI
    a(n)=8*n - 4 - n%2 \\ Charles R Greathouse IV, Nov 29 2016

Formula

From R. J. Mathar, Feb 05 2008: (Start)
G.f.: (3+9*x+4*x^2)/((1-x)^2*(x+1)).
a(n) - a(n-1) = A010729(n).
(End)
From Colin Barker, Nov 29 2016: (Start)
a(n) = 8*n - 4 for n even.
a(n) = 8*n - 5 for n odd.
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3.
(End)
E.g.f.: 4 + ((16*x - 9)*exp(x) + exp(-x))/2. - David Lovler, Aug 21 2022

Extensions

Definition adapted to offset by Georg Fischer, Jun 19 2021

A176442 Decimal expansion of (21+sqrt(469))/6.

Original entry on oeis.org

7, 1, 0, 9, 4, 0, 1, 3, 0, 4, 6, 1, 7, 9, 5, 2, 5, 3, 3, 6, 3, 1, 0, 3, 3, 5, 1, 4, 4, 6, 5, 1, 9, 6, 2, 1, 6, 2, 4, 1, 5, 5, 2, 9, 2, 2, 7, 9, 7, 7, 6, 2, 9, 7, 7, 4, 9, 4, 0, 2, 1, 2, 7, 3, 4, 8, 4, 8, 7, 9, 4, 5, 6, 3, 0, 7, 0, 3, 7, 8, 2, 6, 6, 2, 9, 8, 7, 3, 3, 0, 9, 6, 9, 6, 2, 1, 7, 4, 9, 3, 3, 7, 7, 1, 7
Offset: 1

Views

Author

Klaus Brockhaus, Apr 19 2010

Keywords

Comments

Continued fraction expansion of (21+sqrt(469))/6 is A010729.

Examples

			(21+sqrt(469))/6 = 7.10940130461795253363...
		

Crossrefs

Cf. A176443 (decimal expansion of sqrt(469)), A010729 (repeat 7, 9).

A176520 Decimal expansion of (63+3*sqrt(469))/14.

Original entry on oeis.org

9, 1, 4, 0, 6, 5, 8, 8, 2, 0, 2, 2, 3, 0, 8, 1, 8, 2, 8, 9, 5, 4, 1, 8, 5, 9, 4, 7, 1, 6, 9, 5, 3, 7, 9, 9, 2, 3, 1, 0, 5, 6, 8, 0, 4, 3, 5, 9, 7, 1, 2, 3, 8, 2, 8, 2, 0, 6, 5, 9, 8, 7, 8, 0, 1, 9, 4, 8, 4, 5, 0, 1, 5, 2, 5, 1, 9, 0, 5, 7, 7, 7, 0, 9, 5, 5, 5, 1, 3, 9, 8, 1, 8, 0, 8, 5, 1, 0, 6, 2, 9, 1, 3, 5, 0
Offset: 1

Views

Author

Klaus Brockhaus, Apr 23 2010

Keywords

Comments

Continued fraction expansion of (63+3*sqrt(469))/14 is A010729 preceded by 9.

Examples

			(63+3*sqrt(469))/14 = 9.14065882022308182895...
		

Crossrefs

Cf. A176443 (decimal expansion of sqrt(469)), A010729 (repeat 7, 9).

Programs

Showing 1-6 of 6 results.