A247894
Integer part of square root of A010807: a(n) = floor(sqrt(n^19)).
Original entry on oeis.org
0, 1, 724, 34091, 524288, 4367320, 24685212, 106765608, 379625062, 1162261467, 3162277660, 7820427766, 17874003451, 38235066239, 77306558317, 148890490631, 274877906944, 488950340714, 841567195983, 1406563064942, 2289733608959, 3639848436450, 5662594565481
Offset: 0
A170801
a(n) = n^10*(n^9 + 1)/2.
Original entry on oeis.org
0, 1, 262656, 581160258, 137439477760, 9536748046875, 304679900238336, 5699447733924196, 72057594574798848, 675425860579888245, 5000000005000000000, 30579545237175985446, 159739999716270145536
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (20, -190, 1140, -4845, 15504, -38760, 77520, -125970, 167960, -184756, 167960, -125970, 77520, -38760, 15504, -4845, 1140, -190, 20, -1).
-
List([0..30], n -> n^10*(n^9+1)/2); # G. C. Greubel, Nov 15 2018
-
[n^10*(n^9+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
-
seq(n^10*(n^9 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
-
Table[(n^19 + n^10)/2, {n,0,30}] (* Robert A. Russell, Nov 13 2018 *)
-
vector(30, n, n--; n^10*(n^9+1)/2) \\ G. C. Greubel, Nov 15 2018
-
[n^10*(n^9+1)/2 for n in range(30)] # G. C. Greubel, Nov 15 2018
A010810
22nd powers: a(n) = n^22.
Original entry on oeis.org
0, 1, 4194304, 31381059609, 17592186044416, 2384185791015625, 131621703842267136, 3909821048582988049, 73786976294838206464, 984770902183611232881, 10000000000000000000000, 81402749386839761113321
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (23, -253, 1771, -8855, 33649, -100947, 245157, -490314, 817190, -1144066, 1352078, -1352078, 1144066, -817190, 490314, -245157, 100947, -33649, 8855, -1771, 253, -23, 1).
A036097
Centered cube numbers: (n+1)^19+n^19.
Original entry on oeis.org
1, 524289, 1162785755, 276040168411, 19348364235069, 628433226338621, 12008254925383639, 155514083261229015, 1494966905748847961, 11350851717672992089, 71159090448414546291, 380639089819037473139, 1781400289746069037525, 7438224249324360507861
Offset: 0
1^19 + (1+1)^19 = 524289 = 3 * 174763, a semiprime.
-
[(n+1)^19+n^19: n in [0..20]]; // Vincenzo Librandi, Aug 28 2011
-
A036097:=n->(n+1)^19+n^19: seq(A036097(n), n=0..20); # Wesley Ivan Hurt, Jul 13 2014
-
Total/@Partition[Range[0,20]^19,2,1] (* Harvey P. Dale, Mar 04 2013 *)
f[n_] := n^19; Array[f[#] + f[# + 1] &, 14, 0] (* Robert G. Wilson v, Jul 22 2014 *)
A022535
Nexus numbers (n+1)^19 - n^19.
Original entry on oeis.org
1, 524287, 1161737179, 273715645477, 18798608421181, 590286253682371, 10789535445362647, 132716292890482729, 1206736529597136217, 8649148282327007911, 51159090448414546291, 258320908922208380557, 1142440291004823183829, 4514383668573468286507, 16192074241582091462191
Offset: 0
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.
-
[(n+1)^19-n^19: n in [0..20]]; // Vincenzo Librandi, Nov 22 2011
-
b:=19: a:=n->(n+1)^b-n^b: seq(a(n),n=0..18); # Muniru A Asiru, Feb 28 2018
-
Table[(n+1)^19-n^19,{n,0,20}] (* Vincenzo Librandi, Nov 22 2011 *)
-
for(n=0,20, print1((n+1)^19 - n^19, ", ")) \\ G. C. Greubel, Feb 27 2018
Showing 1-5 of 5 results.
Comments