cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A010050 a(n) = (2n)!.

Original entry on oeis.org

1, 2, 24, 720, 40320, 3628800, 479001600, 87178291200, 20922789888000, 6402373705728000, 2432902008176640000, 1124000727777607680000, 620448401733239439360000, 403291461126605635584000000, 304888344611713860501504000000, 265252859812191058636308480000000
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

Denominators in the expansion of cos(x): cos(x) = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8! - ...
Contribution from Peter Bala, Feb 21 2011: (Start)
We may compare the representation a(n) = Product_{k = 0..n-1} (n*(n+1)-k*(k+1)) with n! = Product_{k = 0..n-1} (n-k). Thus we may view a(n) as a generalized factorial function associated with the oblong numbers A002378. Cf. A000680.
The associated generalized binomial coefficients a(n)/(a(k)*a(n-k)) are triangle A086645, cf. A186432. (End)
Also, this sequence is the denominator of cosh(x) = (e^x + e^(-x))/2 = 1 + x^2/2! + x^4/4! + x^6/6! + ... - Mohammad K. Azarian, Jan 19 2012
Also (2n+1)-th derivative of arccoth(x) at x = 0. - Michel Lagneau, Aug 18 2012
Product of the partition parts of 2n+1 into exactly two positive integer parts, n > 0. Example: a(3) = 720, since 2(3)+1 = 7 has 3 partitions with exactly two positive integer parts: (6,1), (5,2), (4,3). Multiplying the parts in these partitions gives: 6! = 720. - Wesley Ivan Hurt, Jun 03 2013

Examples

			G.f. = 1 + 2*x + 24*x^2 + 720*x^3 + 40320*x^4 + 3628800*x^5 + ...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 110.
  • H. B. Dwight, Tables of Integrals and Other Mathematical Data, Macmillan, NY, 1968, p. 88.
  • Isaac Newton, De analysi, 1669; reprinted in D. Whiteside, ed., The Mathematical Works of Isaac Newton, vol. 1, Johnson Reprint Co., 1964; see p. 20.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapters 32 and 33, equations 32:6:1 and 33:6:1 at pages 300 and 314.

Crossrefs

Programs

Formula

a(n) = 2^n*A000680(n).
E.g.f.: arctanh(x) = Sum_{k>=0} a(k) * x^(2*k+1)/ (2*k+1)!.
E.g.f.: 1/(1-x^2) = Sum_{k>=0} a(k) * x^(2*k) / (2*k)!. - Paul Barry, Sep 14 2004
D-finite with recurrence: a(n+1) = a(n)*(2*n+1)*(2*n+2) = a(n)*A002939(n-1). - Lekraj Beedassy, Apr 29 2005
a(n) = Product_{k = 1..n} (2*k*n-k*(k-1)). - Peter Bala, Feb 21 2011
G.f.: G(0) where G(k) = 1 + 2*x*(2*k+1)*(4*k+1)/(1 - 4*x*(k+1)*(4*k+3)/(4*x*(k+1)*(4*k+3) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2012
a(n) = 2*A002674(n), n > 0. - Wesley Ivan Hurt, Jun 05 2013
From Ilya Gutkovskiy, Jan 20 2017: (Start)
a(n) ~ 2*sqrt(Pi)*4^n*n^(2*n+1/2)/exp(2*n).
Sum_{n>=0} 1/a(n) = cosh(1) = A073743. (End)

Extensions

Third line of data from M. F. Hasler, Apr 22 2015

A296679 Expansion of e.g.f. arcsinh(arctanh(x)) (odd powers only).

Original entry on oeis.org

1, 1, 13, 341, 18649, 1599849, 205524837, 36391450941, 8546308276401, 2564025898856913, 957697868873929149, 435619128300038521893, 237104370189582892175241, 152148421079949399306125625, 113672892845152570858515803925, 97820056722556900357454981990925
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 18 2017

Keywords

Examples

			arcsinh(arctanh(x)) = x/1! + x^3/3! + 13*x^5/5! + 341*x^7/7! + 18649*x^9/9! + 1599849*x^11/11! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[ArcSinh[ArcTanh[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
    nmax = 16; Table[(CoefficientList[Series[Log[(Log[1 + x] - Log[1 - x])/2 + Sqrt[1 + (Log[1 + x] - Log[1 - x])^2/4]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]

Formula

E.g.f.: arcsin(arctan(x)) (odd powers only, absolute values).
E.g.f.: log((log(1 + x) - log(1 - x))/2 + sqrt(1 + (log(1 + x) - log(1 - x))^2/4)) (odd powers only).

A012091 cos(arcsin(arctan(x)))=1-1/2!*x^2+5/4!*x^4-109/6!*x^6+4521/8!*x^8...

Original entry on oeis.org

1, -1, 5, -109, 4521, -330681, 36468717, -5721101541, 1205289090513, -328897528901361, 112769846051251797, -47472161654530776285, 24068680135210975714425, -14466929567049590650593705
Offset: 0

Views

Author

Patrick Demichel (patrick.demichel(AT)hp.com)

Keywords

Crossrefs

Cf. A012254.

Programs

  • Mathematica
    With[{nn=30},Take[CoefficientList[Series[Cos[ArcSin[ArcTan[x]]],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Feb 07 2015 *)
  • Maxima
    a[n]:=if n=0 then 1 else (2*n)!*sum(((2*k)!*binomial(2*k-2,k-1)*(-1)^(n+k+1)*sum((2^(i+1)*stirling1(i,2*k)*binomial(2*n-1,i-1))/i!, i, 2*k, 2*n))/(k*2^(4*k)), k, 1, 2*n); makelist(a[n], n, 0, 13); /* Vladimir Kruchinin, Oct 08 2012 */

Formula

a(n) = (2*n)!*sum(k=1..2*n, ((2*k)!*binomial(2*k-2,k-1)*(-1)^(n+k+1)*sum(i=2*k..2*n, (2^(i+1)*stirling1(i,2*k)*binomial(2*n-1,i-1))/i!))/(k*2^(4*k))) with n>0, a(0)=1. [Vladimir Kruchinin, Oct 08 2012]
Showing 1-3 of 3 results.