A014138 Partial sums of (Catalan numbers starting 1, 2, 5, ...).
0, 1, 3, 8, 22, 64, 196, 625, 2055, 6917, 23713, 82499, 290511, 1033411, 3707851, 13402696, 48760366, 178405156, 656043856, 2423307046, 8987427466, 33453694486, 124936258126, 467995871776, 1757900019100
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000(terms 0 to 200 computed by T. D. Noe)
- Ayomikun Adeniran and Lara Pudwell, Pattern avoidance in parking functions, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
- Paul Barry, Invariant number triangles, eigentriangles and Somos-4 sequences, arXiv preprint arXiv:1107.5490 [math.CO], 2011.
- S. B. Ekhad and M. Yang, Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences, (2017)
- Ângela Mestre and José Agapito, A Family of Riordan Group Automorphisms, J. Int. Seq., Vol. 22 (2019), Article 19.8.5.
- Kevin Topley, Computationally Efficient Bounds for the Sum of Catalan Numbers, arXiv:1601.04223 [math.CO], 2016.
Programs
-
Haskell
a014138 n = a014138_list !! n a014138_list = scanl1 (+) a000108_list -- Reinhard Zumkeller, Mar 01 2013
-
Maple
a:=n->sum((binomial(2*j,j)/(j+1)),j=1..n): seq(a(n), n=0..24); # Zerinvary Lajos, Dec 01 2006 # Second program: A014138 := series(exp(2*x)*(BesselI(0, 2*x)/2 - BesselI(1, 2*x)) + exp(x)*(3/2*int(BesselI(0, 2*x)*exp(x), x) - 1/2), x = 0, 26): seq(n!*coeff(A014138, x, n), n = 0 .. 24); # Mélika Tebni, Aug 31 2024
-
Mathematica
Table[Sum[(2k)!/k!/(k+1)!,{k,1,n}],{n,1,70}] (* Alexander Adamchuk, Jul 03 2006 *) Join[{0},Accumulate[CatalanNumber[Range[30]]]] (* Harvey P. Dale, Jan 25 2013 *) CoefficientList[Series[(1 - 2 x - (1 - 4 x)^(1/2))/(2 x (1 - x)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 21 2015 *) a[0] := 0; a[n_] := Sum[CatalanNumber[k], {k, 1, n}]; Table[a[n], {n,0,50}] (* G. C. Greubel, Jan 14 2017 *)
-
PARI
Vec((1-2*x-(1-4*x)^(1/2))/(2*x*(1-x))) \\ Charles R Greathouse IV, Feb 11 2011
-
Python
from _future_ import division A014138_list, b, s = [0], 1, 0 for n in range(1,10**2): s += b A014138_list.append(s) b = b*(4*n+2)//(n+2) # Chai Wah Wu, Jan 28 2016
Formula
a(n) = A014137(n)-1.
G.f.: (1-2*x-sqrt(1-4x))/(2x(1-x)) = (C(x)-1)/(1-x) where C(x) is the generating function for the Catalan numbers. - Rocio Blanco, Apr 02 2007
a(n) = Sum_{k=1..n} A000108(k). - Alexander Adamchuk, Jul 03 2006
Binomial transform of A005554: (1, 2, 3, 6, 13, 30, 72, ...). - Gary W. Adamson, Nov 23 2007
D-finite with recurrence: (n+1)*a(n) + (1-5n)*a(n-1) + 2*(2n-1)*a(n-2) = 0. - R. J. Mathar, Dec 14 2011
Equals the Catalan sequence starting (1, 1, 2, ...) convolved with A014137 starting (1, 2, 4, 9, ...). - Gary W. Adamson, May 20 2013
G.f.: 1/x - G(0)/(1-x)/x, where G(k) = 1 - x/(1 - x/(1 - x/(1 - x/G(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Jul 17 2013
G.f.: 1/x - T(0)/(2*x*(1-x)), where T(k) = 2*x*(2*k+1)+ k+2 - 2*x*(k+2)*(2*k+3)/T(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 27 2013
a(n) ~ 2^(2*n+2)/(3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Dec 10 2013
a(n) = Sum_{i+jA000108. - Yuchun Ji, Jan 10 2019
E.g.f.: exp(2*x)*(BesselI(0, 2*x)/2 - BesselI(1, 2*x)) + exp(x)*(3/2*Integral_{x=-oo..oo} BesselI(0,2*x)*exp(x) dx - 1/2). - Mélika Tebni, Aug 31 2024
Extensions
Edited by Max Alekseyev, Sep 13 2009 (including adding an initial 0)
Definition edited by N. J. A. Sloane, Oct 03 2009
Comments