A014217 a(n) = floor(phi^n), where phi = (1+sqrt(5))/2 is the golden ratio.
1, 1, 2, 4, 6, 11, 17, 29, 46, 76, 122, 199, 321, 521, 842, 1364, 2206, 3571, 5777, 9349, 15126, 24476, 39602, 64079, 103681, 167761, 271442, 439204, 710646, 1149851, 1860497, 3010349, 4870846, 7881196, 12752042, 20633239, 33385281, 54018521, 87403802
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..4784 (first 301 terms from T. D. Noe)
- Mohammad K. Azarian, Problem 123, Missouri Journal of Mathematical Sciences, Vol. 10, No. 3, Fall 1998, p. 176. Solution published in Vol. 12, No. 1, Winter 2000, pp. 61-62.
- Daniel F. Checa, Arndt Compositions: Connections with Fibonacci Numbers, Statistics, and Generalizations, 2023. p. 29.
- Daniel F. Checa and José L. Ramírez, Arndt Compositions: A Generating Functions Approach, Integers (2024) Vol. 24, A35. See p. 14.
- G. Harman, One hundred years of normal numbers
- Kival Ngaokrajang, Illustration for n = 0..7
- Stefan Schuster and Tatjana Malycheva, Enumeration of saturated and unsaturated substituted N-heterocycles, arXiv:2309.02343 [q-bio.BM], 2023.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1,-1).
Crossrefs
Programs
-
Haskell
a014217 n = a014217_list !! n a014217_list = 1 : 1 : zipWith (+) a000035_list (zipWith (+) a014217_list $ tail a014217_list) -- Reinhard Zumkeller, Jan 06 2012
-
Magma
[Floor( ((1+Sqrt(5))/2)^n ): n in [0..100]]; // Vincenzo Librandi, Apr 16 2011
-
Maple
A014217 := proc(n) option remember; if n <= 3 then op(n+1,[1,1,2,4]) ; else procname(n-1)+2*procname(n-2)-procname(n-3)-procname(n-4) ; end if; end proc: # R. J. Mathar, Jun 23 2013 # a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|-1|2|1>>^n. <<1, 1, 2, 4>>)[1, 1]: seq(a(n), n=0..40); # Alois P. Heinz, Oct 12 2017
-
Mathematica
Table[Floor[GoldenRatio^n], {n, 0, 36}] (* Vladimir Joseph Stephan Orlovsky, Dec 12 2008 *) LinearRecurrence[{1, 2, -1, -1}, {1, 1, 2, 4}, 40] (* Jean-François Alcover, Nov 05 2017 *)
-
PARI
my(x='x+O('x^44)); Vec((1-x^2+x^3)/((1+x)*(1-x)*(1-x-x^2))) \\ Joerg Arndt, Jul 10 2023
-
Python
from sympy import floor, sqrt def A014217(n): return floor(((1+sqrt(5))/2)**n) # Chai Wah Wu, Dec 17 2021
-
Sage
[floor(golden_ratio^n) for n in range(37)] # Danny Rorabaugh, Apr 19 2015
Formula
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4).
a(n) = a(n-1) + a(n-2) + (1-(-1)^n)/2 = a(n-1) + a(n-2) + A000035(n).
a(n) = A000032(n) - (1 + (-1)^n)/2. - Mario Catalani (mario.catalani(AT)unito.it), Jan 17 2003
G.f.: (1-x^2+x^3)/((1+x)*(1-x)*(1-x-x^2)). - R. J. Mathar, Sep 06 2008
a(2n-1) = (Fibonacci(4n+1)-2)/Fibonacci(2n+2). - Gary Detlefs, Feb 16 2011
a(n) = floor(Fibonacci(2n+3)/Fibonacci(n+3)). - Gary Detlefs, Feb 28 2011
a(2n) = Fibonacci(2*n-1) + Fibonacci(2*n+1) - 1. - Gary Detlefs, Mar 10 2011
a(n+2*k) - a(n) = A203976(k)*A000032(n+k) if k odd, a(n+2*k) - a(n) = A203976(k)*A000045(n+k) if k even, for k > 0. - Paul Curtz, Jun 05 2013
a(n+6) - a(n-6) = 40*A000045(n), case k=6 of my formula above. - Paul Curtz, Jun 13 2013
From Paul Curtz, Jun 17 2013: (Start)
a(n-3) + a(n+3) = A153382(n).
a(n-1) + a(n+2) = A022319(n). (End)
For k > 0, a(2k) = A169985(2k)-1 and a(2k+1) = A169985(2k+1) (which is equivalent to Catalani's 2003 formula). - Danny Rorabaugh, Apr 15 2015
a(n) = ((-1)^(1+n)-1)/2 + ((1-sqrt(5))/2)^n + ((1+sqrt(5))/2)^n. - Colin Barker, Nov 05 2017
a(n) = floor(2*sinh(n*arccsch(2))). - Federico Provvedi, Feb 23 2022
E.g.f.: 2*exp(x/2)*cosh(sqrt(5)*x/2) - cosh(x). - Stefano Spezia, Jul 26 2022
Extensions
Corrected by T. D. Noe, Nov 09 2006
Edited by N. J. A. Sloane, Aug 29 2008 at the suggestion of R. J. Mathar
Comments