cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A309036 a(n) = gcd(A007504(n), A014285(n)).

Original entry on oeis.org

2, 1, 1, 17, 2, 1, 1, 7, 2, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 3, 8, 1, 1, 1, 20, 43, 1, 3, 4, 1, 1, 1, 28, 1, 1, 3, 2, 1, 1, 1, 2, 3, 107, 1, 4, 1, 1, 1, 2, 7, 1, 1, 10, 3, 1, 1, 30, 1, 1, 1, 2, 5, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 142, 1, 1, 3, 4, 1, 1, 11, 2, 1, 1, 1, 10
Offset: 1

Views

Author

Robert Israel, Jul 08 2019

Keywords

Comments

a(n) is even if n == 1 (mod 4).

Examples

			a(4) = gcd(2+3+5+7, 1*2+2*3+3*5+4*7) = gcd(17,51) = 17.
		

Crossrefs

Programs

  • Magma
    p:=PrimesUpTo(1000);[Gcd(&+[p[j]:j in [1..m]],&+[j*p[j]:j in [1..m]]): m in [1..90]]; // Marius A. Burtea, Jul 09 2019
  • Maple
    S1:= 0: S2:= 0:
    for n from 1 to 100 do
      p:= ithprime(n);
      S1:= S1 + p;
      S2:= S2 + n*p;
      A[n]:= igcd(S1,S2);
    od:
    seq(A[i],i=1..100);
  • Mathematica
    GCD @@ # & /@ Rest@ Nest[Append[#1, {#1[[-1, 1]] + #3, #1[[-1, -1]] + #2 #3}] & @@ {#1, #2, Prime@ #2} & @@ {#, Length@ #} &, {{0, 0}}, 89] (* Michael De Vlieger, Jul 08 2019 *)
  • PARI
    a(n) = gcd(sum(k=1, n, prime(k)), sum(k=1, n, k*prime(k))); \\ Michel Marcus, Jul 09 2019
    

Formula

a(n) = A007504(n)/A307716(n) = A014285(n)/A306834(n).

A307414 Numbers k such that A014285(k) and A007504(k) are coprime.

Original entry on oeis.org

2, 3, 6, 7, 10, 11, 12, 14, 15, 18, 19, 22, 23, 24, 27, 30, 31, 32, 34, 35, 38, 39, 40, 44, 46, 47, 48, 51, 52, 55, 56, 58, 59, 60, 63, 64, 66, 67, 70, 71, 72, 74, 75, 76, 78, 79, 82, 83, 86, 87, 88, 91, 92, 94, 95, 96, 98, 99, 100, 102, 104, 106, 108, 110, 112, 114, 115, 116, 118, 119, 120, 122
Offset: 1

Views

Author

Robert Israel, Apr 07 2019

Keywords

Comments

Numbers k such that A306834(k) = A014285(k).
No terms == 1 (mod 4).
Numbers k such that A309036(k)=1. - Robert Israel, Jul 09 2019

Examples

			a(3) = 6 is a term because A007504(6) = 41 and A014285(6) = 184 are coprime.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # for terms <= N
    Primes:= map(ithprime, [$1..N]):
    S1:= ListTools:-PartialSums(Primes):
    S2:= ListTools:-PartialSums(zip(`*`,Primes, [$1..N])):
    select(t -> igcd(S1[t],S2[t])=1, [$1..N]);
  • Mathematica
    okQ[n_] := With[{pp = Prime[Range[n]]}, CoprimeQ[Total[pp], Total[pp.Range[n]]]];
    Select[Range[200], okQ] (* Jean-François Alcover, Dec 05 2023 *)
  • PARI
    isok(k) = my(vp=primes(k)); gcd(sum(i=1, k, vp[i]), sum(i=1, k, i*vp[i])) == 1; \\ Michel Marcus, Apr 07 2019

A114256 Prime numbers in A014285.

Original entry on oeis.org

2, 23, 42043, 378761, 462109, 667127, 1116851, 1625461, 1908787, 2637043, 2711399, 3019763, 4394603, 5405447, 7418599, 8682757, 10832561, 12652489, 13528079, 14214661, 15167443, 16413641, 23086711, 27209249, 29062339
Offset: 1

Views

Author

Zak Seidov, Nov 18 2005

Keywords

Crossrefs

Cf. A014285 (Sum i*prime(i); i=1..n), A114257 (numbers n such that A014285(n) is prime).

Programs

  • PARI
    lista(nn) = for(n=1, nn, if (isprime(p=sum(k=1, n, k*prime(k))), print1(p, ", "))); \\ Michel Marcus, May 25 2018

A114257 Numbers n such that A014285(n) is prime.

Original entry on oeis.org

1, 3, 32, 63, 67, 75, 88, 99, 104, 115, 116, 120, 135, 144, 159, 167, 179, 188, 192, 195, 199, 204, 227, 239, 244, 260, 280, 283, 304, 323, 335, 348, 351, 379, 380, 384, 396, 412, 424, 436, 443, 503, 508, 523, 579, 632, 648, 651, 695, 723, 724, 736, 743, 752
Offset: 1

Views

Author

Zak Seidov, Nov 18 2005

Keywords

Crossrefs

Cf. A014285 (Sum i*prime(i); i=1..n), A114256 (Prime numbers in A014285).

Programs

  • PARI
    isok(n) = isprime(sum(i=1, n, i*prime(i))); \\ Michel Marcus, May 25 2018

A062020 a(n) = Sum_{i=1..n} Sum_{j=1..i} (prime(i) - prime(j)).

Original entry on oeis.org

0, 1, 6, 17, 44, 81, 142, 217, 324, 485, 666, 913, 1208, 1529, 1906, 2373, 2936, 3533, 4238, 5019, 5840, 6787, 7822, 8995, 10360, 11825, 13342, 14967, 16648, 18445, 20662, 23003, 25536, 28135, 31074, 34083, 37308, 40755, 44354, 48187, 52260
Offset: 1

Views

Author

Amarnath Murthy, Jun 02 2001

Keywords

Examples

			a(3) = (5-2) + (5-3) + (3-2) = 6.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= a[n]= If[n<3, (n-1), 2*a[n-1] -a[n-2] +(n-1)*(Prime[n] -Prime[n-1])];
    Table[a[n], {n, 50}] (* G. C. Greubel, May 04 2022 *)
  • SageMath
    @CachedFunction
    def a(n): # A062020
        if (n<3): return (n-1)
        else: return 2*a(n-1) - a(n-2) + (n-1)*(nth_prime(n) - nth_prime(n-1))
    [a(n) for n in (1..50)] # G. C. Greubel, May 04 2022

Formula

a(n) = a(n-1) + n*prime(n) - Sum_{i = 1..n} prime(i), with a(0) = 0.
a(n) = 2*a(n-1) - a(n-2) + (n-1)*(prime(n) - prime(n-1)), with a(1) = 0, a(2) = 1.
a(n) = Sum_{j=1..n} (2*j - (n+1))*prime(j) = 2*A014285(n) - (n+1)*A007504(n). - G. C. Greubel, May 04 2022

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 05 2001
Name edited by G. C. Greubel, May 04 2022

A143121 Triangle read by rows, T(n,k) = Sum_{j=k..n} prime(j), 1 <= k <= n.

Original entry on oeis.org

2, 5, 3, 10, 8, 5, 17, 15, 12, 7, 28, 26, 23, 18, 11, 41, 39, 36, 31, 24, 13, 58, 56, 53, 48, 41, 30, 17, 77, 75, 72, 67, 60, 49, 36, 19, 100, 98, 95, 90, 83, 72, 59, 42, 23, 129, 127, 124, 119, 112, 101, 88, 71, 52, 29, 160, 158, 155, 150, 143, 132, 119, 102, 83, 60, 31
Offset: 1

Views

Author

Keywords

Comments

Left border = A007504, sum of first n primes: (2, 5, 10, 27, 28, 41, ...).
Right border = primes = A000040.
Row sums = A014285: (2, 8, 23, 51, 106, 184, ...).

Examples

			First few rows of the triangle are:
   2;
   5,  3;
  10,  8,  5;
  17, 15, 12,  7;
  28, 26, 23, 18, 11;
  41, 39, 36, 31, 24, 13;
  58, 56, 53, 48, 41, 30, 17;
  ...
T(5,3) = 23 = prime(3) + prime(4) + prime(5) = (5 + 7 + 11).
		

Crossrefs

Cf. A194939 (rows reversed).

Programs

  • Magma
    [[(&+[NthPrime(j): j in [k..n]]): k in [1..n]]: n in [1..15]]; // G. C. Greubel, Oct 15 2018
  • Maple
    a:=proc(n,k) add(ithprime(j),j=k..n) end: seq(seq(a(n,k),k=1..n),n=1..11); # Muniru A Asiru, Oct 15 2018
  • Mathematica
    a[n_, k_] := a[n, k] = Plus@@Prime[Range[n - k + 1, n]]; Column[Table[a[n, k], {n, 15}, {k, n, 1, -1}], Center] (* Alonso del Arte, Jul 25 2011 *)
    Table[Sum[Prime[j], {j, k, n}], {n, 1, 15}, {k, 1, n}]//Flatten (* G. C. Greubel, Oct 15 2018 *)
  • PARI
    a(n,k)=my(s);forprime(p=prime(k),prime(n),s+=p);s \\ Charles R Greathouse IV, Jul 25 2011
    

Formula

T(n,k) = Sum_{j=k..n} prime(j), 1 <= k <= n, primes = A000040.
Equals A000012 * (A000040 * 0^(n-k)) * A000012.

Extensions

Corrected by Hanke Bremer, Nov 28 2008

A306834 Numerator of the barycenter of first n primes defined as a(n) = numerator(Sum_{i=1..n} (i*prime(i)) / Sum_{i=1..n} prime(i)).

Original entry on oeis.org

1, 8, 23, 3, 53, 184, 303, 65, 331, 952, 1293, 1737, 1135, 2872, 3577, 1475, 1357, 6526, 7799, 3073, 1344, 12490, 14399, 16535, 948, 502, 24367, 9121, 7631, 33914, 37851, 42043, 1663, 51290, 56505, 20647, 33875, 73944, 80457, 87377, 47358, 34106, 1033, 119023, 31972, 137042, 146959, 157663
Offset: 1

Views

Author

Andres Cicuttin, Mar 12 2019

Keywords

Comments

It appears that lim_{n->infinity} (1/n)*(A014285(n)/A007504(n)) = k, where k is a constant around 2/3.

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    Primes:= map(ithprime, [$1..N]):
    S1:= ListTools:-PartialSums(Primes):
    S2:= ListTools:-PartialSums(zip(`*`,Primes, [$1..N])):
    map(numer,zip(`/`,S2,S1)); # Robert Israel, Apr 07 2019
  • Mathematica
    a[n_]:=Sum[i*Prime[i],{i,1,n}]/Sum[Prime[i],{i,1,n}];
    Table[a[n]//Numerator,{n,1,40}]
  • PARI
    a(n) = numerator(sum(i=1, n, i*prime(i))/sum(i=1, n, prime(i))); \\ Michel Marcus, Mar 15 2019

Formula

a(n) = numerator(Sum_{i=1..n} (i*prime(i)) / Sum_{i=1..n} prime(i)).
a(n) = numerator(A014285(n)/A007504(n)).

A316322 Sum of piles of first n primes: a(n) = Sum(prime(i)*(2*i-1): 1<=i<=n).

Original entry on oeis.org

2, 11, 36, 85, 184, 327, 548, 833, 1224, 1775, 2426, 3277, 4302, 5463, 6826, 8469, 10416, 12551, 15030, 17799, 20792, 24189, 27924, 32107, 36860, 42011, 47470, 53355, 59568, 66235, 73982, 82235, 91140, 100453, 110734, 121455, 132916, 145141, 158000, 171667, 186166, 201189, 217424, 234215, 251748
Offset: 1

Views

Author

N. J. A. Sloane, Jul 03 2018, based on Reinhard Zumkeller's A083215

Keywords

Examples

			............................................ 7
........................... 5 ............ 7 5 7
............ 3 .......... 5 3 5 ........ 7 5 3 5 7
2 ........ 3 2 3 ...... 5 3 2 3 5 .... 7 5 3 2 3 5 7
a(1)=2 ... a(2)=11 .... a(3)=36 ...... a(4)=85.
		

Crossrefs

Programs

  • Maple
    seq(add((2*i-1)*ithprime(i),i=1..n), n=1..80); # Ridouane Oudra, Feb 19 2025
  • Mathematica
    nxt[{n_, a_}] := {n + 1, a + Prime[n + 1] (2 n + 1)}; NestList[nxt,{1,2},50][[All,2]] (* Harvey P. Dale, Jul 05 2018 *)
  • PARI
    a(n) = sum(i=1, n, prime(i)*(2*i-1)); \\ Michel Marcus, Jan 22 2022

Formula

From Ridouane Oudra, Feb 19 2025: (Start)
a(n) = Sum_{i=1..n} Sum_{j=1..n} max(prime(i), prime(j)).
a(n) = 2*A014285(n) - A007504(n).
a(n) = 2*A167214(n) - A023662(n).
a(n) = A167214(n) + A062020(n). (End)

A194939 Table T read by rows, where T(n, k) is the sum of the largest k primes up to and including prime(n), for 1 <= k <= n.

Original entry on oeis.org

2, 3, 5, 5, 8, 10, 7, 12, 15, 17, 11, 18, 23, 26, 28, 13, 24, 31, 36, 39, 41, 17, 30, 41, 48, 53, 56, 58, 19, 36, 49, 60, 67, 72, 75, 77, 23, 42, 59, 72, 83, 90, 95, 98, 100, 29, 52, 71, 88, 101, 112, 119, 124, 127, 129, 31, 60, 83, 102, 119, 132, 143, 150, 155, 158, 160
Offset: 1

Views

Author

Alonso del Arte, Sep 07 2011

Keywords

Comments

From the left, the second column gives the sums of two consecutive primes, the third column gives the sums of three consecutive primes, etc. Thus, from the right, the rightmost column gives the running sum of all prime numbers up to that row.
This triangle is the mirror image of A143121: left border are the primes (right border in the other one) while the right border is the sum of the first n primes (A007504, left border in the other one). Row sums are given by A014285, just like the other triangle.
On odd numbered rows, the central entry is exactly the same as the corresponding position in A143121: T(n, (n + 1)/2) = A143121(n, (n + 1)/2). The rest of the row is of course the reverse.

Examples

			First few rows of triangle are:
2
3,   5
5,   8, 10
7,  12, 15, 17
11, 18, 23, 26, 28
...
T(5, 2) = 18 because the sum of the fourth and fifth primes (two consecutive primes) is 7 + 11 = 18.
T(5, 3) = 23 because the sum of the third, fourth and fifth primes (three consecutive primes) is 5 + 7 + 11 = 23.
		

Crossrefs

Cf. A143121 (rows reversed), A014285 (row sums).
Cf. A000040 (column k=1), A007504 (main diagonal).
Cf. A067377.

Programs

  • Mathematica
    a[n_, k_] := a[n, k] = Plus@@Prime[Range[n - k + 1, n]]; Column[Table[a[n, k], {n, 15}, {k, n}], Center]

Formula

T(n, k) = Sum_{i = n-k+1..n} prime(i), where prime(i) is the i-th prime number.

Extensions

More terms from Michel Marcus, Aug 31 2020
New name from David A. Corneth, Aug 31 2020

A272206 Rounded barycenter of first n primes defined as a(n) = round(sum_{i=1..n}(i*prime(i)) / sum_{i=1..n}prime(i)).

Original entry on oeis.org

1, 2, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 19, 19, 20, 21, 21, 22, 23, 23, 24, 25, 26, 26, 27, 28, 28, 29, 30, 30, 31, 32, 32, 33, 34, 35, 35, 36, 37, 37, 38, 39, 39, 40, 41, 41, 42, 43, 43, 44, 45
Offset: 1

Views

Author

Andres Cicuttin, May 21 2016

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[i*Prime[i], {i, 1, n}]/Sum[Prime[i], {i, 1, n}];
    Table[a[n] // Round, {n, 1, 64}];
  • PARI
    a(n) = round(sum(k=1, n, k*prime(k))/ sum(k=1, n, prime(k))); \\ Michel Marcus, May 22 2016

Formula

a(n) = round(sum_{i=1..n}(i*prime(i)) / sum_{i=1..n}prime(i)).
a(n) = round(A014285(n)/A007504(n)).
Showing 1-10 of 14 results. Next