A014300 Number of nodes of odd outdegree in all ordered rooted (planar) trees with n edges.
1, 2, 7, 24, 86, 314, 1163, 4352, 16414, 62292, 237590, 909960, 3497248, 13480826, 52097267, 201780224, 783051638, 3044061116, 11851853042, 46208337584, 180383564228, 704961896036, 2757926215742, 10799653176704, 42326626862636, 166021623024584, 651683311373788
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..500
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Hacène Belbachir and Abdelghani Mehdaoui, Diagonal sums in Pascal pyramid (1, 2, r), Les Annales RECITS (2019) Vol. 6, 45-52.
- N. Dershowitz and S. Zaks, Ordered trees and non-crossing partitions, Discrete Math., 62 (1986), 215-218.
- Emeric Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
- Index entries for sequences related to rooted trees
Programs
-
Magma
[(&+[(-1)^(n-k)*Binomial(n+k-1, k-1): k in [0..n]]): n in [1..30]]; // G. C. Greubel, Feb 19 2019
-
Maple
a:= proc(n) a(n):= `if`(n<3, n, ((12-40*n+21*n^2) *a(n-1)+ 2*(3*n-1)*(2*n-3) *a(n-2))/ (2*(3*n-4)*n)) end: seq(a(n), n=1..30); # Alois P. Heinz, Oct 30 2012
-
Mathematica
Rest[CoefficientList[Series[2x/(1-4x+(1+2x)Sqrt[1-4x]),{x,0,40}],x]] (* Harvey P. Dale, Apr 25 2011 *) a[n_] := Sum[Binomial[2k, n-1], {k, 0, n-1}]; Array[a, 30] (* Jean-François Alcover, Dec 25 2015, after Paul Barry *)
-
PARI
a(n) = n--; sum(k=0, n, binomial(2*k,n)); \\ Michel Marcus, May 18 2018
-
Python
from itertools import count, islice def A014300_gen(): # generator of terms yield from (1,2) a, c = 1, 1 for n in count(1): yield (a:=(3*n+5)*(c:=c*((n<<2)+2)//(n+2))-a>>1) A014300_list = list(islice(A014300_gen(),20)) # Chai Wah Wu, Apr 26 2023
-
Sage
[sum((-1)^(n-k)*binomial(n+k-1, k-1) for k in (0..n)) for n in (1..30)] # G. C. Greubel, Feb 19 2019
Formula
a(n) = (binomial(2*n, n) + A000957(n))/3; [simplified by Alexander Burstein, Nov 24 2023]
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n+k-1, k-1). - Vladeta Jovovic, Aug 28 2002
G.f.: 2*z/(1-4*z+(1+2*z)*sqrt(1-4*z)).
a(n) = Sum_{j=0..floor((n-1)/2)} binomial(2*n-2*j-2, n-1).
2*a(n) + a(n-1) = (3*n-1)*Catalan(n-1). - Vladeta Jovovic, Dec 03 2004
a(n) = (-1)^n*Sum_{i=0..n} Sum_{j=n..2*n} (-1)^(i+j)*binomial(j, i). - Benoit Cloitre, Jun 18 2005
a(n) = Sum_{k=0..n} C(2*k,n) [offset 0]. - Paul Barry, May 13 2006
a(n) = Sum_{k=0..n} (-1)^(n-k)*C(n+k-1,k-1). - Paul Barry, Jul 18 2006
From Paul Barry, Jul 17 2009: (Start)
a(n) = Sum_{k=0..n} C(2*n-k,n-k)*(1+(-1)^k)/2.
a(n) = Sum_{k=0..n} C(n+k,k)*(1+(-1)^(n-k))/2. (End)
a(n) is the coefficient of x^(n+1)*y^(n+1) in 1/(1- x^2*y/((1-2*x)*(1-y))). - Ira M. Gessel, Oct 30 2012
a(n) = -binomial(2*n,n-1)*hyper2F1([1,2*n+1],[n+2], 2). - Peter Luschny, Jul 25 2014
a(n) = [x^n] x/((1 - x^2)*(1 - x)^n). - Ilya Gutkovskiy, Oct 25 2017
a(n) ~ 4^n / (3*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 25 2017
D-finite with recurrence: 2*n*a(n) +(-3*n-4)*a(n-1) +2*(-9*n+19)*a(n-2) +4*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Feb 20 2020
a(n) = A333564(n)/2^n. - Peter Bala, Apr 09 2020
a(n) = (1/2)*(binomial(2*n,n) - A072547(n)). - Peter Bala, Mar 28 2023
Comments