A189800
a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
Offset: 0
Sequences of the form a(n) = c*a(n-1) + d*a(n-2), with a(0)=0, a(1)=1:
c/d...1.......2.......3.......4.......5.......6.......7.......8.......9......10
-
I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
-
LinearRecurrence[{6, 8}, {0, 1}, 50]
CoefficientList[Series[-(x/(-1+6 x+8 x^2)),{x,0,50}],x] (* Harvey P. Dale, Jul 26 2011 *)
-
a(n)=([0,1; 8,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
A015580
Expansion of x/(1 - 9*x - 4*x^2).
Original entry on oeis.org
0, 1, 9, 85, 801, 7549, 71145, 670501, 6319089, 59553805, 561260601, 5289560629, 49851088065, 469818035101, 4427766668169, 41729172153925, 393273616058001, 3706379233137709, 34930507562471385, 329200084994793301, 3102522795203025249, 29239505496806400445
Offset: 0
-
[n le 2 select n-1 else 9*Self(n-1) + 4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2012
-
LinearRecurrence[{9, 4}, {0, 1}, 30] (* Vincenzo Librandi, Nov 14 2012 *)
-
x='x+O('x^30); concat([0], Vec(x/(1-9*x-4*x^2))) \\ G. C. Greubel, Jan 06 2018
-
[lucas_number1(n,9,-4) for n in range(0, 19)] # Zerinvary Lajos, Apr 26 2009
A015581
a(n) = 9*a(n-1) + 5*a(n-2).
Original entry on oeis.org
0, 1, 9, 86, 819, 7801, 74304, 707741, 6741189, 64209406, 611590599, 5825362421, 55486214784, 528502745161, 5033955780369, 47948115749126, 456702820643979, 4350065964541441, 41434107784092864, 394657299879542981, 3759086237836351149, 35805062639924875246
Offset: 0
-
[n le 2 select n-1 else 9*Self(n-1) + 5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 15 2012
-
Join[{a=0,b=1},Table[c=9*b+5*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 27 2011 *)
LinearRecurrence[{9, 5}, {0, 1}, 30] (* Vincenzo Librandi, Nov 15 2012 *)
-
x='x+O('x^30); concat([0], Vec(x/(1-9*x-5*x^2))) \\ G. C. Greubel, Jan 06 2018
-
[lucas_number1(n,9,-5) for n in range(0, 19)] # Zerinvary Lajos, Apr 26 2009
A015583
a(0) = 0, a(1) = 1; for n >= 2, a(n) = 9*a(n-1) + 7*a(n-2).
Original entry on oeis.org
0, 1, 9, 88, 855, 8311, 80784, 785233, 7632585, 74189896, 721137159, 7009563703, 68134033440, 662273246881, 6437397456009, 62572489832248, 608214190682295, 5911935144966391, 57464915639473584, 558567786770026993, 5429364490406558025, 52774254921049211176
Offset: 0
-
a:=[0,1];; for n in [3..22] do a[n]:=9*a[n-1]+7*a[n-2]; od; a; # Muniru A Asiru, Jul 15 2018
-
[n le 2 select n-1 else 9*Self(n-1) + 7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 15 2012
-
a:=proc(n) option remember: if n=0 then 0 elif n=1 then 1 else 9*procname(n-1)+7*procname(n-2) fi: end; seq(a(n),n=0..22); # Muniru A Asiru, Jul 15 2018
-
Join[{a=0,b=1},Table[c=9*b+7*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 27 2011 *)
LinearRecurrence[{9, 7}, {0, 1}, 30] (* Vincenzo Librandi, Nov 15 2012 *)
-
x='x+O('x^30); concat([0], Vec(1/(1-9*x-7*x^2))) \\ G. C. Greubel, Jan 06 2018
-
[lucas_number1(n,9,-7) for n in range(0, 19)] # Zerinvary Lajos, Apr 26 2009
A015584
Expansion of g.f. x/(1 - 9*x - 8*x^2).
Original entry on oeis.org
0, 1, 9, 89, 873, 8569, 84105, 825497, 8102313, 79524793, 780541641, 7661073113, 75193991145, 738034505209, 7243862476041, 71099038326041, 697842244742697, 6849372509292601, 67227090541574985, 659838794948515673, 6476365878869240937, 63566003269411293817
Offset: 0
-
[n le 2 select n-1 else 9*Self(n-1) + 8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 15 2012
-
LinearRecurrence[{9, 8}, {0, 1}, 30] (* Vincenzo Librandi, Nov 15 2012 *)
CoefficientList[Series[x/(1-9x-8x^2),{x,0,30}],x] (* Harvey P. Dale, Sep 06 2022 *)
-
concat(0, Vec(x / (1-9*x-8*x^2) + O(x^30))) \\ Colin Barker, May 16 2017
-
[lucas_number1(n,9,-8) for n in range(0, 19)] # Zerinvary Lajos, Apr 26 2009
A181353
a(n) = 9*a(n-1) + 3*a(n-2); a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 9, 84, 783, 7299, 68040, 634257, 5912433, 55114668, 513769311, 4789267803, 44644718160, 416170266849, 3879466556121, 36163709805636, 337111787919087, 3142497220688691, 29293810349955480, 273071784811665393, 2545527494354854977, 23728962803628690972
Offset: 0
-
I:=[0,1]; [n le 2 select I[n] else 9*Self(n-1) + 3*Self(n-2): n in [1..30]];
-
Join[{a=0,b=1},Table[c=9*b+3*a;a=b;b=c,{n,60}]]
LinearRecurrence[{9,3}, {0,1}, 30] (* G. C. Greubel, Jan 24 2018 *)
-
x='x+O('x^30); concat([0], Vec(x/(1-9*x-3*x^2))) \\ G. C. Greubel, Jan 24 2018
A015589
Expansion of x/(1 - 10*x - 7*x^2).
Original entry on oeis.org
0, 1, 10, 107, 1140, 12149, 129470, 1379743, 14703720, 156695401, 1669880050, 17795668307, 189645843420, 2021028112349, 21537802027430, 229525217060743, 2446016784799440, 26066844367419601, 277790561167792090, 2960373522249858107, 31548269150673125700
Offset: 0
-
[n le 2 select n-1 else 10*Self(n-1) + 7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 15 2012
-
Join[{a=0,b=1},Table[c=10*b+7*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 27 2011 *)
CoefficientList[Series[x/(1-10x-7x^2),{x,0,30}],x] (* or *) LinearRecurrence[ {10,7},{0,1},31] (* Harvey P. Dale, Nov 26 2011 *)
-
x='x+O('x^30); concat([0], Vec(x/(1-10*x-7*x^2))) \\ G. C. Greubel, Jan 06 2018
-
[lucas_number1(n,10,-7) for n in range(0, 18)] # Zerinvary Lajos, Apr 26 2009
A153191
a(n) = 9*a(n-1) + 6*a(n-2); a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 9, 87, 837, 8055, 77517, 745983, 7178949, 69086439, 664851645, 6398183439, 61572760821, 592543948023, 5702332097133, 54876252562335, 528100265643813, 5082159906168327, 48908040749377821, 470665326181410351
Offset: 0
-
I:=[0,1]; [n le 2 select I[n] else 9*Self(n-1) + 6*Self(n-2): n in [1..25]]; // G. C. Greubel, Jan 24 2018
-
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=9*a[n-1]+6*a[n-2]od: seq(a[n], n=0..33);
-
LinearRecurrence[{9,6}, {0,1}, 25] (* G. C. Greubel, Jan 24 2018 *)
-
x='x+O('x^25); concat([0], Vec(x/(1-9*x-6*x^2))) \\ G. C. Greubel, Jan 24 2018
-
[lucas_number1(n,9,-6) for n in range(0, 25)]# Zerinvary Lajos, Apr 26 2009
A287829
Number of sequences over the alphabet {0,1,...,9} such that no two consecutive terms have distance 6.
Original entry on oeis.org
1, 10, 92, 848, 7816, 72040, 663992, 6120008, 56408056, 519912520, 4792028792, 44168084168, 407096815096, 3752207504200, 34584061167992, 318760965520328, 2938016812018936, 27079673239211080, 249593092776937592, 2300497181470860488, 21203660818791619576
Offset: 0
Cf.
A040000,
A003945,
A083318,
A078057,
A003946,
A126358,
A003946,
A055099,
A003947,
A015448,
A126473.
A287804-
A287819.
A287825-
A287831.
-
LinearRecurrence[{9, 2}, {1, 10}, 30]
-
def a(n):
if n in [0, 1]:
return [1, 10][n]
return 9*a(n-1)+2*a(n-2)
Showing 1-9 of 9 results.
Comments