cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A189800 a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    LinearRecurrence[{6, 8}, {0, 1}, 50]
    CoefficientList[Series[-(x/(-1+6 x+8 x^2)),{x,0,50}],x] (* Harvey P. Dale, Jul 26 2011 *)
  • PARI
    a(n)=([0,1; 8,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: x/(1 - 2*x*(3+4*x)). - Harvey P. Dale, Jul 26 2011

A015580 Expansion of x/(1 - 9*x - 4*x^2).

Original entry on oeis.org

0, 1, 9, 85, 801, 7549, 71145, 670501, 6319089, 59553805, 561260601, 5289560629, 49851088065, 469818035101, 4427766668169, 41729172153925, 393273616058001, 3706379233137709, 34930507562471385, 329200084994793301, 3102522795203025249, 29239505496806400445
Offset: 0

Views

Author

Keywords

Comments

Pisano period lengths: 1, 1, 2, 1, 3, 2, 48, 2, 6, 3, 10, 2, 42, 48, 6, 4, 24, 6,360, 3, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 9*Self(n-1) + 4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2012
    
  • Mathematica
    LinearRecurrence[{9, 4}, {0, 1}, 30] (* Vincenzo Librandi, Nov 14 2012 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1-9*x-4*x^2))) \\ G. C. Greubel, Jan 06 2018
  • Sage
    [lucas_number1(n,9,-4) for n in range(0, 19)] # Zerinvary Lajos, Apr 26 2009
    

Formula

a(n) = 9*a(n-1) + 4*a(n-2).

Extensions

Extended by T. D. Noe, May 23 2011

A015581 a(n) = 9*a(n-1) + 5*a(n-2).

Original entry on oeis.org

0, 1, 9, 86, 819, 7801, 74304, 707741, 6741189, 64209406, 611590599, 5825362421, 55486214784, 528502745161, 5033955780369, 47948115749126, 456702820643979, 4350065964541441, 41434107784092864, 394657299879542981, 3759086237836351149, 35805062639924875246
Offset: 0

Views

Author

Keywords

Comments

A linear 2nd-order recurrence.

Crossrefs

Programs

Formula

G.f.: x/(1 - 9*x - 5*x^2). - R. J. Mathar, Dec 02 2007

Extensions

Extended by T. D. Noe, May 23 2011

A015583 a(0) = 0, a(1) = 1; for n >= 2, a(n) = 9*a(n-1) + 7*a(n-2).

Original entry on oeis.org

0, 1, 9, 88, 855, 8311, 80784, 785233, 7632585, 74189896, 721137159, 7009563703, 68134033440, 662273246881, 6437397456009, 62572489832248, 608214190682295, 5911935144966391, 57464915639473584, 558567786770026993, 5429364490406558025, 52774254921049211176
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    a:=[0,1];; for n in [3..22] do a[n]:=9*a[n-1]+7*a[n-2]; od; a; # Muniru A Asiru, Jul 15 2018
  • Magma
    [n le 2 select n-1 else 9*Self(n-1) + 7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 15 2012
    
  • Maple
    a:=proc(n) option remember: if n=0 then 0 elif n=1 then 1 else 9*procname(n-1)+7*procname(n-2) fi: end; seq(a(n),n=0..22); # Muniru A Asiru, Jul 15 2018
  • Mathematica
    Join[{a=0,b=1},Table[c=9*b+7*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 27 2011 *)
    LinearRecurrence[{9, 7}, {0, 1}, 30] (* Vincenzo Librandi, Nov 15 2012 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(1/(1-9*x-7*x^2))) \\ G. C. Greubel, Jan 06 2018
    
  • Sage
    [lucas_number1(n,9,-7) for n in range(0, 19)] # Zerinvary Lajos, Apr 26 2009
    

Formula

G.f.: 1/(1 - 9*x - 7*x^2). - Zerinvary Lajos, Dec 20 2008

Extensions

Extended by T. D. Noe, May 23 2011

A015584 Expansion of g.f. x/(1 - 9*x - 8*x^2).

Original entry on oeis.org

0, 1, 9, 89, 873, 8569, 84105, 825497, 8102313, 79524793, 780541641, 7661073113, 75193991145, 738034505209, 7243862476041, 71099038326041, 697842244742697, 6849372509292601, 67227090541574985, 659838794948515673, 6476365878869240937, 63566003269411293817
Offset: 0

Views

Author

Keywords

Comments

Pisano period lengths: 1, 1, 4, 1, 24, 4, 6, 1, 4, 24, 10, 4, 12, 6, 24, 1,144, 4, 15, 24, ... . - R. J. Mathar, Aug 10 2012
For n >= 2, the number of positive integers with n-1 decimal digits in which adjacent digits differ by at most 8. - Edwin Hermann, Apr 19 2025

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 9*Self(n-1) + 8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 15 2012
    
  • Mathematica
    LinearRecurrence[{9, 8}, {0, 1}, 30] (* Vincenzo Librandi, Nov 15 2012 *)
    CoefficientList[Series[x/(1-9x-8x^2),{x,0,30}],x] (* Harvey P. Dale, Sep 06 2022 *)
  • PARI
    concat(0, Vec(x / (1-9*x-8*x^2) + O(x^30))) \\ Colin Barker, May 16 2017
  • Sage
    [lucas_number1(n,9,-8) for n in range(0, 19)] # Zerinvary Lajos, Apr 26 2009
    

Formula

a(n) = 9*a(n-1) + 8*a(n-2).
a(n) = (-((9-sqrt(113))/2)^n + ((9+sqrt(113))/2)^n) / sqrt(113). - Colin Barker, May 16 2017
E.g.f.: 2*exp(9*x/2)*sinh(sqrt(113)*x/2)/sqrt(113). - Stefano Spezia, Oct 25 2023

Extensions

Extended by T. D. Noe, May 23 2011

A181353 a(n) = 9*a(n-1) + 3*a(n-2); a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 9, 84, 783, 7299, 68040, 634257, 5912433, 55114668, 513769311, 4789267803, 44644718160, 416170266849, 3879466556121, 36163709805636, 337111787919087, 3142497220688691, 29293810349955480, 273071784811665393, 2545527494354854977, 23728962803628690972
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 9*Self(n-1) + 3*Self(n-2): n in [1..30]];
  • Mathematica
    Join[{a=0,b=1},Table[c=9*b+3*a;a=b;b=c,{n,60}]]
    LinearRecurrence[{9,3}, {0,1}, 30] (* G. C. Greubel, Jan 24 2018 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1-9*x-3*x^2))) \\ G. C. Greubel, Jan 24 2018
    

Formula

a(n) = ((9+sqrt(93))^n - (9-sqrt(93))^n)/(2^n*sqrt(93)). - Rolf Pleisch, May 14 2011
G.f.: x/(1 - 9*x - 3*x^2). - Philippe Deléham, Nov 21 2011
a(n+1) = Sum_{k=0..n} A099097(n,k)*3^k. - Philippe Deléham, Nov 21 2011
E.g.f.: 2*exp(9*x/2)*sinh(sqrt(93)*x/2)/sqrt(93). - Stefano Spezia, Apr 06 2023

A015589 Expansion of x/(1 - 10*x - 7*x^2).

Original entry on oeis.org

0, 1, 10, 107, 1140, 12149, 129470, 1379743, 14703720, 156695401, 1669880050, 17795668307, 189645843420, 2021028112349, 21537802027430, 229525217060743, 2446016784799440, 26066844367419601, 277790561167792090, 2960373522249858107, 31548269150673125700
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 10*Self(n-1) + 7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 15 2012
    
  • Mathematica
    Join[{a=0,b=1},Table[c=10*b+7*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 27 2011 *)
    CoefficientList[Series[x/(1-10x-7x^2),{x,0,30}],x] (* or *) LinearRecurrence[ {10,7},{0,1},31] (* Harvey P. Dale, Nov 26 2011 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1-10*x-7*x^2))) \\ G. C. Greubel, Jan 06 2018
  • Sage
    [lucas_number1(n,10,-7) for n in range(0, 18)] # Zerinvary Lajos, Apr 26 2009
    

Formula

G.f.: x/(1 - 10*x - 7*x^2).
a(n) = 10*a(n-1) + 7*a(n-2).
a(n) = (8+5*sqrt(2))*((5+4*sqrt(2))^n-(5-4*sqrt(2))^n)/(16*(5+4*sqrt(2))). - Wesley Ivan Hurt, Aug 04 2025

Extensions

Extended by T. D. Noe, May 23 2011

A153191 a(n) = 9*a(n-1) + 6*a(n-2); a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 9, 87, 837, 8055, 77517, 745983, 7178949, 69086439, 664851645, 6398183439, 61572760821, 592543948023, 5702332097133, 54876252562335, 528100265643813, 5082159906168327, 48908040749377821, 470665326181410351
Offset: 0

Views

Author

Zerinvary Lajos, Dec 20 2008

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 9*Self(n-1) + 6*Self(n-2): n in [1..25]]; // G. C. Greubel, Jan 24 2018
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=9*a[n-1]+6*a[n-2]od: seq(a[n], n=0..33);
  • Mathematica
    LinearRecurrence[{9,6}, {0,1}, 25] (* G. C. Greubel, Jan 24 2018 *)
  • PARI
    x='x+O('x^25); concat([0], Vec(x/(1-9*x-6*x^2))) \\ G. C. Greubel, Jan 24 2018
    
  • Sage
    [lucas_number1(n,9,-6) for n in range(0, 25)]#  Zerinvary Lajos, Apr 26 2009
    

Formula

G.f.: x/(1 - 9*x - 6*x^2).

Extensions

Formula corrected by Philippe Deléham, Dec 20 2008
Edited by N. J. A. Sloane, Dec 21 2008

A287829 Number of sequences over the alphabet {0,1,...,9} such that no two consecutive terms have distance 6.

Original entry on oeis.org

1, 10, 92, 848, 7816, 72040, 663992, 6120008, 56408056, 519912520, 4792028792, 44168084168, 407096815096, 3752207504200, 34584061167992, 318760965520328, 2938016812018936, 27079673239211080, 249593092776937592, 2300497181470860488, 21203660818791619576
Offset: 0

Views

Author

David Nacin, Jun 02 2017

Keywords

Comments

In general, the number of sequences over the alphabet {0,1,...,9} such that no two consecutive terms have distance 5+k for k in {0,1,2,3,4} is given by a(n) = 9*a(n-1) + 2*k*a(n-2), a(0)=1, a(1)=10.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{9, 2}, {1, 10}, 30]
  • Python
    def a(n):
     if n in [0, 1]:
      return [1, 10][n]
     return 9*a(n-1)+2*a(n-2)

Formula

a(n) = 9*a(n-1) + 2*a(n-2), a(0)=1, a(1)=10.
G.f.: (-1 - x)/(-1 + 9*x + 2*x^2).
a(n) = ((1 - 11/sqrt(89))/2)*((9 - sqrt(89))/2)^n + ((1 + 11/sqrt(89))/2)*((9 + sqrt(89))/2)^n.
a(n) = A015579(n)+A015579(n+1). - R. J. Mathar, Oct 20 2019
Showing 1-9 of 9 results.