cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A016321 Expansion of 1/((1-2x)(1-9x)(1-10x)).

Original entry on oeis.org

1, 21, 313, 4065, 49081, 566721, 6350473, 69654225, 751887961, 8016991521, 84652923433, 886876310385, 9231886792441, 95586981129921, 985282830165193, 10117545471478545, 103557909243290521, 1057021183189581921
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(175*10^n +2^n-2*9^(n+2))/14 : n in [0..20]]; // Vincenzo Librandi, Oct 09 2011
    
  • Mathematica
    CoefficientList[Series[1/((1-2x)(1-9x)(1-10x)),{x,0,20}],x] (* or *) LinearRecurrence[{21,-128,180},{1,21,313},20] (* Harvey P. Dale, Aug 18 2014 *)
  • PARI
    a(n) = (175*10^n+2^n-162*9^n)/14 \\ Charles R Greathouse IV, Sep 23 2012
  • Sage
    [(10^n - 2^n)/8-(9^n - 2^n)/7 for n in range(2,20)] # Zerinvary Lajos, Jun 05 2009
    

Formula

From Zerinvary Lajos, Jun 05 2009 [corrected by R. J. Mathar, Mar 14 2011]: (Start)
a(n) = 2^(n-1)/7 - 9^(n+2)/7 + 25*10^n/2.
a(n) = A016134(n+1) - A016133(n+1). (End)
From Vincenzo Librandi, Oct 09 2011: (Start)
a(n) = (175*10^n + 2^n - 2*9^(n+2))/14.
a(n) = 19*a(n-1) - 90*a(n-2) + 2^n.
a(n) = 21*a(n-1) - 128*a(n-2) + 180*a(n-3), n >= 3. (End)

A016325 Expansion of 1/((1-2x)(1-10x)(1-11x)).

Original entry on oeis.org

1, 23, 377, 5395, 71841, 915243, 11317657, 136994195, 1631936081, 19201296763, 223714264137, 2585856904995, 29694425953921, 339138685491083, 3855525540397817, 43660780944367795, 492768590388029361
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(2*11^(n+2) +2^n-225*10^n)/18 : n in [0..20]]; // Vincenzo Librandi, Oct 09 2011
    
  • Mathematica
    CoefficientList[Series[1/((1 - 2 x) (1 - 10 x) (1 - 11 x)), {x, 0, 16}], x] (* Michael De Vlieger, Jan 31 2018 *)
  • PARI
    Vec(1/((1-2*x)*(1-10*x)*(1-11*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
  • Sage
    [(11^n - 2^n)/9-(10^n - 2^n)/8 for n in range(2,19)] # Zerinvary Lajos, Jun 05 2009
    

Formula

From Zerinvary Lajos, Jun 05 2009 [corrected by R. J. Mathar, Mar 14 2011]: (Start)
a(n) = 11^(n+2)/9 + 2^(n-1)/9 - 25*10^n/2.
a(n) = A016135(n+1) - A016134(n+1). (End)
a(n) = 21*a(n-1) - 110*a(n-2) + 2^n. - Vincenzo Librandi, Oct 09 2011

A060458 Maximum value seen in the final n decimal digits of 2^j for all values of j.

Original entry on oeis.org

8, 96, 992, 9984, 99968, 999936, 9999872, 99999744, 999999488, 9999998976, 99999997952, 999999995904, 9999999991808, 99999999983616, 999999999967232, 9999999999934464, 99999999999868928, 999999999999737856, 9999999999999475712, 99999999999998951424, 999999999999997902848
Offset: 1

Views

Author

Labos Elemer, Apr 09 2001

Keywords

Comments

Consider the final n decimal digits of 2^j for all values of j. They are periodic. Sequence gives maximal value seen in these n digits.
With f(n) = a(n+1) - a(n), the difference f(n) - a(n) is always 8*10^n meaning that a(n) becomes its own "first differences" sequence when each term is prefixed a digit '8'. For higher order differences, the prefix 8 becomes: 8*10^n*Sum_{k=0..m-1} 9^k where m is the order. - R. J. Cano, May 11 2014

Examples

			Maximum of the last 4 digits of powers of 2 is 9984=10000-16. It occurs at 2^254. 2^254 = 289480223.....01978282409984 (with 77 digits, last 4 ones are ...9984). The period length of the last-4-digit segment is A005054(4)=500. For n=4 period: amplitude=9984, phase=254.
		

Crossrefs

Programs

  • Magma
    [10^n-2^n : n in [1..20]]; // Wesley Ivan Hurt, Sep 25 2014
    
  • Maple
    A060458:=n->10^n-2^n: seq(A060458(n), n=1..20); # Wesley Ivan Hurt, Sep 25 2014
  • Mathematica
    RecurrenceTable[{a[n] == 12 a[n - 1] - 20 a[n - 2], a[0] == 0, a[1] == 8}, a[n], {n, 1, 20}]  (* Geoffrey Critzer, Dec 15 2011*)
  • PARI
    a(n)=sum(j=0,n-1,2^(3*n-2*j)*binomial(n,j)) \\ R. J. Cano, May 15 2014
    
  • PARI
    A060458(n)=(5^n-1)<M. F. Hasler, Oct 31 2014
  • Sage
    [10^n - 2^n for n in range(1,19)] # Zerinvary Lajos, Jun 05 2009
    

Formula

a(n) = 10^n - 2^n = 2^n*(5^n - 1).
From Geoffrey Critzer, Dec 15 2011: (Start)
a(n) = 12*a(n-1) - 20*a(n-2).
O.g.f.: 1/(1-10*x) - 1/(1-2*x). (End)
a(n) = f(n,0) where f(x,y) = Sum_{j=0..x+y-1} (2^(3*x-2*j)*binomial(x,j)). - R. J. Cano, May 15 2014
a(n) = 2^(n+2)*A003463(n). - R. J. Cano, Sep 25 2014
a(n) = 8*A016134(n-1). - R. J. Mathar, Mar 10 2022
E.g.f.: exp(2*x)*(exp(8*x) - 1). - Elmo R. Oliveira, Mar 26 2025

Extensions

Edited by M. F. Hasler, Oct 31 2014
More terms from Elmo R. Oliveira, Mar 26 2025

A332690 Sum of all numbers in bijective base-9 numeration with digit sum n.

Original entry on oeis.org

0, 1, 12, 124, 1248, 12496, 124992, 1249984, 12499968, 124999936, 1249999862, 12499999623, 124999998144, 1249999984364, 12499999840480, 124999998308464, 1249999981991936, 12499999808733888, 124999997974967808, 1249999978624935680, 12499999774999871588
Offset: 0

Views

Author

Alois P. Heinz, Feb 19 2020

Keywords

Comments

Different from A016134.

Examples

			a(2) = 12 = 2 + 10 = 2_bij9 + 11_bij9.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, [1, 0], add((p->
          [p[1], p[2]*9+p[1]*d])(b(n-d)), d=1..min(n, 9)))
        end:
    a:= n-> b(n)[2]:
    seq(a(n), n=0..23);

Formula

G.f.: (Sum_{j=1..9} j*x^j) / ((B(x) - 1) * (9*B(x) - 1)) with B(x) = Sum_{j=1..9} x^j.
a(n) = A028904(A332691(n)).
a(n) = A016134(n-1) for n = 1..9.

A332691 Bijective base-9 representation of the sum of all numbers in bijective base-9 numeration with digit sum n.

Original entry on oeis.org

1, 13, 147, 1636, 18124, 199399, 2314581, 25461653, 281178597, 3192976395, 35233852789, 387573484456, 4374418444135, 48228613881184, 541525753635894, 5956784387951128, 66635738355523786, 743994232656361639, 8285146556418623572, 92246623188575957748
Offset: 1

Views

Author

Alois P. Heinz, Feb 19 2020

Keywords

Examples

			a(2) = 13_bij9 = 12 = 2 + 10 = 2_bij9 + 11_bij9.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, [1, 0], add((p->
          [p[1], p[2]*9+p[1]*d])(b(n-d)), d=1..min(n, 9)))
        end:
    g:= proc(n) local d, l, m; m, l:= n, "";
          while m>0 do d:= irem(m, 9, 'm');
            if d=0 then d:=9; m:= m-1 fi; l:= d, l
          od; parse(cat(l))
        end:
    a:= n-> g(b(n)[2]):
    seq(a(n), n=1..23);

Formula

a(n) = A052382(A332690(n)).

A096043 Triangle read by rows: T(n,k) = (n+1,k)-th element of (M^9-M)/8, where M is the infinite lower Pascal's triangle matrix, 1<=k<=n.

Original entry on oeis.org

1, 10, 2, 91, 30, 3, 820, 364, 60, 4, 7381, 4100, 910, 100, 5, 66430, 44286, 12300, 1820, 150, 6, 597871, 465010, 155001, 28700, 3185, 210, 7, 5380840, 4782968, 1860040, 413336, 57400, 5096, 280, 8, 48427561, 48427560, 21523356, 5580120, 930006
Offset: 1

Views

Author

Gary W. Adamson, Jun 17 2004

Keywords

Examples

			Triangle begins:
1
10 2
91 30 3
820 364 60 4
7381 4100 910 100 5
66430 44286 12300 1820 150 6
		

Crossrefs

Cf. A007318. First column gives A002452. Row sums give A016134.

Programs

  • Maple
    P:= proc(n) option remember; local M; M:= Matrix(n, (i, j)-> binomial(i-1, j-1)); (M^9-M)/8 end: T:= (n, k)-> P(n+1)[n+1, k]: seq(seq(T(n, k), k=1..n), n=1..11); # Alois P. Heinz, Oct 07 2009
  • Mathematica
    P[n_] := P[n] = With[{M = Array[Binomial[#1-1, #2-1]&, {n, n}]}, (MatrixPower[M, 9] - M)/8]; T[n_, k_] := P[n+1][[n+1, k]]; Table[ Table[T[n, k], {k, 1, n}], {n, 1, 11}] // Flatten (* Jean-François Alcover, Jan 28 2015, after Alois P. Heinz *)

Extensions

Edited with more terms by Alois P. Heinz, Oct 07 2009

A279035 Left-concatenate zeros to 2^(n-1) such that it has n digits. In the regular array formed by listing the found powers, a(n) is the sum of (nonzero) digits in column n.

Original entry on oeis.org

1, 2, 4, 9, 9, 9, 8, 19, 9, 8, 17, 27, 27, 27, 28, 17, 26, 35, 45, 45, 46, 37, 25, 44, 53, 65, 42, 72, 74, 52, 70, 90, 92, 74, 53, 62, 72, 70, 93, 61, 81, 80, 89, 100, 91, 80, 91, 79, 99, 99, 99, 98, 107, 117, 118, 106, 130, 86, 123, 155, 137, 117, 118, 105, 136
Offset: 1

Views

Author

David A. Corneth, Dec 03 2016

Keywords

Comments

After carries, this is the decimal expansion of Sum_{i>=0} 0.2^i = 1.25. For n > 2, the 10^0's digit of a(n) + the 10^1's digit of a(n+1) + ... + the 10^m's digit of a(n+m) = 9 for some finite m.
Conjecture: a(n) ~ c*n where c ~= 1.93.
Conjecture: lim_{n->infinity} a(n)/n = (9/2)*log_5(2) =
1.93804... - Jon E. Schoenfield, Dec 09 2016

Examples

			1
.2
. 4
. .8
. .16
. . 32
. . .64
. . .128
. . . 256
. . . .512
. . . .1024
The sum of digits of the first column is 1. Therefore, a(1) = 1.
The sum of digits in column 4 is 8 + 1 = 9. Therefore, a(4) = 9.
With the powers of 2 listed above, we can find n up to n = 7. For n > 8, some digits from 2^m compose a(n) for m > 10.
		

Crossrefs

Programs

  • Mathematica
    f[n_, b_] := Block[{k = n}, While[k < n + Floor[ k*Log10[b]], k++]; Plus @@ Mod[ Quotient[ Table[ b^j*10^(k - j), {j, n -1, k}], 10^(k - n +1)], 10]]; Table[f[n, 2], {n, 65}]
     (* Robert G. Wilson v, Dec 03 2016 *)

A016205 Expansion of g.f. 1/((1-x)*(1-2*x)*(1-10*x)).

Original entry on oeis.org

1, 13, 137, 1385, 13881, 138873, 1388857, 13888825, 138888761, 1388888633, 13888888377, 138888887865, 1388888886841, 13888888884793, 138888888880697, 1388888888872505, 13888888888856121, 138888888888823353, 1388888888888757817, 13888888888888626745, 138888888888888364601
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = (25*10^n - 9*2^n + 2)/18. - Bruno Berselli, Feb 09 2011
a(n) = 10*a(n-1) + 2^(n+1) - 1 if n > 0; a(0)=1. - Vincenzo Librandi, Feb 09 2011
From Elmo R. Oliveira, Mar 26 2025: (Start)
E.g.f.: exp(x)*(25*exp(9*x) - 9*exp(x) + 2)/18.
a(n) = 13*a(n-1) - 32*a(n-2) + 20*a(n-3).
a(n) = A016134(n+1) - A002275(n+2). (End)

Extensions

More terms from Elmo R. Oliveira, Mar 26 2025

A350592 Integers m such that b(m) := 20^m*(5^(m+1) - 1)/4 + (20^m - 1)/19 is a prime.

Original entry on oeis.org

2, 4, 5, 7, 9, 13, 85, 222, 249, 1843
Offset: 1

Views

Author

Ya-Ping Lu, Jan 07 2022

Keywords

Comments

b(m) = Sum_{i=0..2m} 2^(m - |m - i|)*10^i.
a(11) > 5000. - Michael S. Branicky, Jun 07 2022
a(11) > 50000. - Michael S. Branicky, Dec 21 2024

Examples

			m            b(m)          n    a(n)
--   -------------------   --   ----
0             1
1            121
2           12421          1     2
3          1248421
4         124968421        2     4
5        12499368421       3     5
6       1249987368421
7      124999747368421     4     7
8     12499994947368421
9    1249999898947368421   5     9
		

Crossrefs

Programs

  • Mathematica
    Select[Range[250], PrimeQ[20^# * (5^(# + 1) - 1)/4 + (20^# - 1)/19] &] (* Amiram Eldar, Jan 08 2022 *)
  • Python
    from sympy import isprime; {print(m, end = ', ') for m in range(2000) if isprime(20**m*(5**(m+1) - 1)//4 + (20**m - 1)//19)}
Showing 1-9 of 9 results.