A016742 Even squares: a(n) = (2*n)^2.
0, 4, 16, 36, 64, 100, 144, 196, 256, 324, 400, 484, 576, 676, 784, 900, 1024, 1156, 1296, 1444, 1600, 1764, 1936, 2116, 2304, 2500, 2704, 2916, 3136, 3364, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5476, 5776, 6084, 6400, 6724, 7056, 7396, 7744, 8100, 8464
Offset: 0
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
- Seberry, Jennifer and Yamada, Mieko; Hadamard matrices, sequences and block designs, in Dinitz and Stinson, eds., Contemporary design theory, pp. 431-560, Wiley-Intersci. Ser. Discrete Math. Optim., Wiley, New York, 1992.
- W. D. Wallis, Anne Penfold Street and Jennifer Seberry Wallis, Combinatorics: Room squares, sum-free sets, Hadamard matrices, Lecture Notes in Mathematics, Vol. 292, Springer-Verlag, Berlin-New York, 1972. iv+508 pp.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..900
- R. P. Boas and N. J. A. Sloane, Correspondence, 1974.
- Leo Tavares, Illustration: X Squares
- Various, Electron Configuration (Discussion in Physics Forums).
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Eric Weisstein's World of Mathematics, King Graph.
- Eric Weisstein's World of Mathematics, Molecular Topological Index.
- Wikipedia, Aufbau principle.
- Index entries for sequences related to Hadamard matrices
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A000290, A001105, A001539, A016754, A016802, A016814, A016826, A016838, A007742, A033991, A245058.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Cf. sequences listed in A254963.
Cf. A016813.
Programs
-
GAP
List([0..100], n -> (2*n)^2); # Muniru A Asiru, Jan 28 2018
-
Haskell
a016742 = (* 4) . (^ 2) a016742_list = 0 : map (subtract 4) (zipWith (+) a016742_list [8, 16 ..]) -- Reinhard Zumkeller, Jun 28 2015, Apr 20 2015
-
Magma
[(2*n)^2: n in [0..50]]; // Vincenzo Librandi, Apr 26 2011
-
Maple
seq((2*n)^2, n=0..100); # Muniru A Asiru, Jan 28 2018
-
Mathematica
Table[(2n)^2, {n, 0, 46}] (* Alonso del Arte, Apr 26 2011 *)
-
Maxima
makelist((2*n)^2,n,0,20); /* Martin Ettl, Jan 22 2013 */
-
PARI
a(n)=4*n^2 \\ Charles R Greathouse IV, Jul 28 2015
Formula
O.g.f.: 4*x*(1+x)/(1-x)^3. - R. J. Mathar, Jul 28 2008
a(n) = A155955(n,2) for n > 1. - Reinhard Zumkeller, Jan 31 2009
Sum_{n>=1} 1/a(n) = (1/4)*Pi^2/6 = Pi^2/24. - Ant King, Nov 04 2009
a(n) = a(n-1) + 8*n - 4 (with a(0)=0). - Vincenzo Librandi, Nov 19 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 4, a(2) = 16. - Philippe Deléham, Mar 26 2013
a(n) = A118729(8n+3). - Philippe Deléham, Mar 26 2013
Pi = 2*Product_{n>=1} (1 + 1/(a(n)-1)). - Adriano Caroli, Aug 04 2013
Pi = Sum_{n>=0} 8/(a(2n+1)-1). - Adriano Caroli, Aug 06 2013
E.g.f.: exp(x)*(4x^2 + 4x). - Geoffrey Critzer, Oct 07 2013
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/48 (A245058). - Amiram Eldar, Oct 10 2020
From Amiram Eldar, Jan 25 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/2)/(Pi/2) (A308716).
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/2)/(Pi/2) = 2/Pi (A060294). (End)
Extensions
More terms from Sabir Abdus-Samee (sabdulsamee(AT)prepaidlegal.com), Mar 13 2006
Comments