A016861 a(n) = 5*n + 1.
1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 206, 211, 216, 221, 226, 231, 236, 241, 246, 251, 256, 261, 266, 271, 276, 281
Offset: 0
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- J. Campbell, T. W. Mattman, R. Ottman, J. Pyzer, M. Rodrigues and S. Williams, Intrinsic knotting and linking of almost complete graphs, arXiv:math/0701422 [math.GT], Jan 15 2007.
- Tanya Khovanova, Recursive Sequences.
- Eric Weisstein's World of Mathematics, Clique.
- Eric Weisstein's World of Mathematics, Moebius Ladder.
- Eric Weisstein's World of Mathematics, Prism Graph.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
GAP
a:=List([0..60],n->5*n+1);; Print(a); # Muniru A Asiru, Jan 01 2019
-
Haskell
a016861 = (+ 1) . (* 5) a016861_list = [1, 6 ..] -- Reinhard Zumkeller, Jun 16 2013
-
Maple
A016861:=n->5*n+1; seq(A016861(n), n=0..100); # Wesley Ivan Hurt, May 03 2014
-
Mathematica
Range[1, 500, 5] (* Vladimir Joseph Stephan Orlovsky, May 26 2011 *) LinearRecurrence[{2, -1}, {6, 11}, {0, 20}] (* Eric W. Weisstein, Nov 29 2017 *) CoefficientList[Series[(1 + 4 x)/(-1 + x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Nov 29 2017 *)
-
PARI
a(n)=5*n+1 \\ Charles R Greathouse IV, Jul 10 2016
Formula
G.f.: (1+4*x)/(1-x)^2.
Row sums of triangle A131843. - Gary W. Adamson, Jul 21 2007
a(n) = 2*a(n-1) - a(n-2) with a(0)=1, a(1)=6. - Vincenzo Librandi, Aug 01 2010
E.g.f.: exp(x)*(1 + 5*x). - Stefano Spezia, Mar 23 2021
Sum_{n>=0} (-1)^n/a(n) = sqrt(2+2/sqrt(5))*Pi/10 + log(phi)/sqrt(5) + log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 15 2023
Extensions
More terms from Reinhard Zumkeller, Oct 23 2006
Comments