A016897 a(n) = 5*n + 4.
4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 54, 59, 64, 69, 74, 79, 84, 89, 94, 99, 104, 109, 114, 119, 124, 129, 134, 139, 144, 149, 154, 159, 164, 169, 174, 179, 184, 189, 194, 199, 204, 209, 214, 219, 224, 229, 234, 239, 244, 249, 254, 259, 264, 269, 274, 279, 284
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 944.
- Tanya Khovanova, Recursive Sequences.
- Leo Tavares, Illustration: Mirror Triangles.
- Eric Weisstein's World of Mathematics, Book Graph.
- Eric Weisstein's World of Mathematics, Clique.
- Eric Weisstein's World of Mathematics, Ladder Graph.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Magma
[5*n+4: n in [0..70]]; // Vincenzo Librandi, May 02 2011
-
Maple
a[1]:=4:for n from 2 to 100 do a[n]:=a[n-1]+5 od: seq(a[n], n=1..57); # Zerinvary Lajos, Mar 16 2008
-
Mathematica
Range[4, 500, 5] (* Vladimir Joseph Stephan Orlovsky, May 26 2011 *) Table[5 n + 4, {n, 0, 20}] (* Eric W. Weisstein, Nov 29 2017 *) 5 Range[0, 20] + 4 (* Eric W. Weisstein, Nov 29 2017 *) LinearRecurrence[{2, -1}, {9, 14}, {0, 20}] (* Eric W. Weisstein, Nov 29 2017 *) CoefficientList[Series[(4 + x)/(-1 + x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Nov 29 2017 *)
-
PARI
a(n)=5*n+4 \\ Charles R Greathouse IV, Sep 24 2015
Formula
G.f.: (4+x)/(1-x)^2. - Paul Barry, Feb 27 2003
a(n) = 2*a(n-1) - a(n-2), n>1. - Philippe Deléham, Nov 03 2008
a(n) = A131098(n+2) + n + 1. - Jaroslav Krizek, Aug 15 2009
a(n) = 10*n - a(n-1) + 3, n>0. - Vincenzo Librandi, Nov 20 2010
A000041(a(n)) == 0 mod 5 is the first of Ramanujan's congruences. - Ivan N. Ianakiev, Dec 29 2014
a(n) = (n+2)^2 - 2*A000217(n-1). See Mirror Triangles illustration. - Leo Tavares, Aug 18 2021
Sum_{n>=0} (-1)^n/a(n) = sqrt(10*(5+sqrt(5)))*Pi/50 - log(2)/5 - sqrt(5)*log(phi)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 07 2021
E.g.f.: exp(x)*(4 + 5*x). - Elmo R. Oliveira, Mar 08 2024
Comments