cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 45 results. Next

A017377 a(n) = 10*n + 9.

Original entry on oeis.org

9, 19, 29, 39, 49, 59, 69, 79, 89, 99, 109, 119, 129, 139, 149, 159, 169, 179, 189, 199, 209, 219, 229, 239, 249, 259, 269, 279, 289, 299, 309, 319, 329, 339, 349, 359, 369, 379, 389, 399, 409, 419, 429, 439, 449, 459, 469, 479, 489, 499, 509, 519, 529, 539
Offset: 0

Views

Author

Keywords

Comments

Numbers k such that k^k ends with 9. - Bruno Berselli, Dec 11 2018

References

  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pp. 126-127.

Crossrefs

Programs

Formula

a(n) = 10*n + 9; a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, May 29 2011
G.f.: (9+x)/(x-1)^2. - R. J. Mathar, Oct 16 2015
From Elmo R. Oliveira, Apr 05 2025: (Start)
E.g.f.: exp(x)*(9 + 10*x).
a(n) = A016897(2*n+1). (End)

A147875 Second heptagonal numbers: a(n) = n*(5*n+3)/2.

Original entry on oeis.org

0, 4, 13, 27, 46, 70, 99, 133, 172, 216, 265, 319, 378, 442, 511, 585, 664, 748, 837, 931, 1030, 1134, 1243, 1357, 1476, 1600, 1729, 1863, 2002, 2146, 2295, 2449, 2608, 2772, 2941, 3115, 3294, 3478, 3667, 3861, 4060, 4264, 4473, 4687, 4906, 5130, 5359, 5593
Offset: 0

Views

Author

Keywords

Comments

Zero followed by partial sums of A016897.
Apparently = every 2nd term of A111710 and A085787.
Bisection of A085787. Sequence found by reading the line from 0, in the direction 0, 13, ... and the line from 4, in the direction 4, 27, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Jul 18 2012
Numbers of the form m^2 + k*m*(m+1)/2: in this case is k=3. See also A254963. - Bruno Berselli, Feb 11 2015

Examples

			G.f. = 4*x + 13*x^2 + 27*x^3 + 46*x^4 + 70*x^5 + 99*x^6 + 133*x^7 + ... - _Michael Somos_, Jan 25 2019
		

Crossrefs

Cf. A016897, A111710, A000217, A085787, A224419 (positions of squares).
Second n-gonal numbers: A005449, A014105, A045944, A179986, A033954, A062728, A135705.
Cf. A000566.

Programs

  • GAP
    List([0..50], n-> n*(5*n+3)/2); # G. C. Greubel, Jul 04 2019
  • Magma
    [n*(5*n+3)/2: n in [0..50]]; // G. C. Greubel, Jul 04 2019
    
  • Mathematica
    Table[(n(5n+3))/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 4, 13}, 50] (* Harvey P. Dale, May 15 2013 *)
  • PARI
    a(n)=n*(5*n+3)/2 \\ Charles R Greathouse IV, Sep 24 2015
    
  • Sage
    [n*(5*n+3)/2 for n in (0..50)] # G. C. Greubel, Jul 04 2019
    

Formula

G.f.: x*(4+x)/(1-x)^3.
a(n) = Sum_{k=0..n-1} A016897(k).
a(n) - a(n-1) = 5*n -1. - Vincenzo Librandi, Nov 26 2010
G.f.: U(0) where U(k) = 1 + 2*(2*k+3)/(k + 2 - x*(k+2)^2*(k+3)/(x*(k+2)*(k+3) + (2*k+2)*(2*k+3)/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 14 2012
E.g.f.: U(0) where U(k) = 1 + 2*(2*k+3)/(k + 2 - 2*x*(k+2)^2*(k+3)/(2*x*(k+2)*(k+3) + (2*k+2)^2*(2*k+3)/U(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Nov 14 2012
a(n) = A130520(5n+3). - Philippe Deléham, Mar 26 2013
a(n) = A131242(10n+7)/2. - Philippe Deléham, Mar 27 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=4, a(2)=13. - Harvey P. Dale, May 15 2013
Sum_{n>=1} 1/a(n) = 10/9 + sqrt(1 - 2/sqrt(5))*Pi/3 - 5*log(5)/6 + sqrt(5)*log((1 + sqrt(5))/2)/3 = 0.4688420784500060750083432... . - Vaclav Kotesovec, Apr 27 2016
a(n) = A000217(n) + A000217(2*n). - Bruno Berselli, Jul 01 2016
From Ilya Gutkovskiy, Jul 01 2016: (Start)
E.g.f.: x*(8 + 5*x)*exp(x)/2.
Dirichlet g.f.: (5*zeta(s-2) + 3*zeta(s-1))/2. (End)
a(n) = A000566(-n) for all n in Z. - Michael Somos, Jan 25 2019
From Leo Tavares, Feb 14 2022: (Start)
a(n) = A003215(n) - A000217(n+1). See Sliced Hexagons illustration in links.
a(n) = A000096(n) + 2*A000290(n). (End)

Extensions

Edited by Klaus Brockhaus and R. J. Mathar, Nov 20 2008
New name from Bruno Berselli, Jan 13 2011

A191702 Dispersion of A008587 (5,10,15,20,25,30,...), by antidiagonals.

Original entry on oeis.org

1, 5, 2, 25, 10, 3, 125, 50, 15, 4, 625, 250, 75, 20, 6, 3125, 1250, 375, 100, 30, 7, 15625, 6250, 1875, 500, 150, 35, 8, 78125, 31250, 9375, 2500, 750, 175, 40, 9, 390625, 156250, 46875, 12500, 3750, 875, 200, 45, 11, 1953125, 781250, 234375, 62500, 18750
Offset: 1

Views

Author

Clark Kimberling, Jun 12 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3 or mod 4, see A191655, A191663, A191667.
...
Each of the sequences (5n, n>1), (5n+1, n>1), (5n+2, n>=0), (5n+3, n>=0), (5n+4, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The ten sequences and dispersions are listed here:
...
A191702=dispersion of A008587 (5k, k>=1)
A191703=dispersion of A016861 (5k+1, k>=1)
A191704=dispersion of A016873 (5k+2, k>=0)
A191705=dispersion of A016885 (5k+3, k>=0)
A191706=dispersion of A016897 (5k+4, k>=0)
A191707=dispersion of A047201 (1, 2, 3, 4 mod 5 and >1)
A191708=dispersion of A047202 (0, 2, 3, 4 mod 5 and >1)
A191709=dispersion of A047207 (0, 1, 3, 4 mod 5 and >1)
A191710=dispersion of A032763 (0, 1, 2, 4 mod 5 and >1)
A191711=dispersion of A001068 (0, 1, 2, 3 mod 5 and >1)
...
EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
A191702 has 1st col A047201, all else A008587
A191703 has 1st col A047202, all else A016861
A191704 has 1st col A047207, all else A016873
A191705 has 1st col A032763, all else A016885
A191706 has 1st col A001068, all else A016897
A191707 has 1st col A008587, all else A047201
A191708 has 1st col A042968, all else A047203
A191709 has 1st col A042968, all else A047207
A191710 has 1st col A042968, all else A032763
A191711 has 1st col A042968, all else A001068
...
Regarding the dispersions A191670-A191673, there is a formula for sequences of the type
"(a or b or c or d mod m)", used in Mathematica programs for A191707-A191711): if f(n)=(n mod 3), then
(a,b,c,d,a,b,c,d,a,b,c,d,...) is given by
a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n), so that for n>=1,
"(a, b, c, d mod m)" is given by
a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n)+m*floor((n-1)/4)).

Examples

			Northwest corner:
  1...5....25....125...625
  2...10...50....250...1250
  3...15...75....375...1875
  4...20...100...500...2500
  6...30...150...750...3750
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    f[n_] := 5n
    Table[f[n], {n, 1, 30}]  (* A008587 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
    (* A191702 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191702  *)

Formula

T(i,j) = T(i,1)*T(1,j) = (i-1+floor((i+3)/4))*5^(j-1), i>=1, j>=1.

A071734 a(n) = p(5n+4)/5 where p(k) denotes the k-th partition number.

Original entry on oeis.org

1, 6, 27, 98, 315, 913, 2462, 6237, 15035, 34705, 77231, 166364, 348326, 710869, 1417900, 2769730, 5308732, 9999185, 18533944, 33845975, 60960273, 108389248, 190410133, 330733733, 568388100, 967054374, 1629808139, 2722189979
Offset: 0

Views

Author

Benoit Cloitre, Jun 24 2002

Keywords

Comments

One of the congruences related to the partition numbers stated by Ramanujan.
Also the coefficients in the expansion of C^5/B^6, in Watson's notation (p. 105). The connection to the partition function is in equation (3.31) with right side 5C^5/B^6 where B = x * f(-x^24), C = x^5 * f(-x^120) where f() is a Ramanujan theta function. Alternatively B = eta(q^24), C = eta(q^120). - Michael Somos, Jan 06 2015

Examples

			G.f. = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 913*x^5 + 2462*x^6 + ...
G.f. = q^19 + 6*q^43 + 27*q^67 + 98*q^91 + 315*q^115 + 913*q^139 + ...
		

References

  • Berndt and Rankin, "Ramanujan: letters and commentaries", AMS-LMS, History of mathematics, vol. 9, pp. 192-193
  • G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940. - From N. J. A. Sloane, Jun 07 2012

Crossrefs

Programs

  • Maple
    with(combinat):
    a:= n-> numbpart(5*n+4)/5:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jan 07 2015
  • Mathematica
    a[ n_] := PartitionsP[ 5 n + 4] / 5; (* Michael Somos, Jan 07 2015 *)
    a[ n_] := SeriesCoefficient[ 1 / QPochhammer[ x], {x, 0, 5 n + 4}] / 5; (* Michael Somos, Jan 07 2015 *)
    nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))^5/(1 - x^k)^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / eta(x + O(x^(5*n + 5))), 5*n + 4) / 5)};
    
  • PARI
    {a(n) = numbpart(5*n + 4) / 5};
    
  • PARI
    a(n)=polcoeff(prod(m=1,n,(1-x^(5*m))^5/(1-x^m +x*O(x^n))^6),n) \\ Paul D. Hanna

Formula

a(n) = (1/5)*A000041(5n+4).
G.f.: Product_{n>=1} (1 - x^(5*n))^5/(1 - x^n)^6 due to Ramanujan's identity. - Paul D. Hanna, May 22 2011
a(n) = A000041(A016897(n))/5 = A213260(n)/5. - Omar E. Pol, Jan 18 2013
Euler transform of period 5 sequence [ 6, 6, 6, 6, 1, ...]. - Michael Somos, Jan 07 2015
Expansion of q^(-19/24) * eta(q^5)^5 / eta(q)^6 in powers of q. - Michael Somos, Jan 07 2015
a(n) ~ exp(Pi*sqrt(10*n/3)) / (100*sqrt(3)*n). - Vaclav Kotesovec, Nov 28 2016

A017317 a(n) = 10*n + 4.

Original entry on oeis.org

4, 14, 24, 34, 44, 54, 64, 74, 84, 94, 104, 114, 124, 134, 144, 154, 164, 174, 184, 194, 204, 214, 224, 234, 244, 254, 264, 274, 284, 294, 304, 314, 324, 334, 344, 354, 364, 374, 384, 394, 404, 414, 424, 434, 444, 454, 464, 474, 484, 494, 504, 514, 524, 534
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0(59).

Crossrefs

Programs

Formula

a(n) = 10*n + 4; a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, May 29 2011
G.f.: 2*(2+3*x)/(x-1)^2. - R. J. Mathar, Mar 20 2018
From Elmo R. Oliveira, Apr 05 2025: (Start)
E.g.f.: 2*exp(x)*(2 + 5*x).
a(n) = 2*A016873(n) = A016897(2*n). (End)

A017365 a(n) = 10*n + 8.

Original entry on oeis.org

8, 18, 28, 38, 48, 58, 68, 78, 88, 98, 108, 118, 128, 138, 148, 158, 168, 178, 188, 198, 208, 218, 228, 238, 248, 258, 268, 278, 288, 298, 308, 318, 328, 338, 348, 358, 368, 378, 388, 398, 408, 418, 428, 438, 448, 458, 468, 478, 488, 498, 508, 518, 528, 538
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, May 29 2011
From R. J. Mathar, Nov 26 2014: (Start)
G.f.: 2*(4+x)/(x-1)^2.
a(n) = 2*A016897(n). (End)
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: 2*exp(x)*(4 + 5*x).
a(n) = A016885(2*n+1). (End)

A191703 Dispersion of A016861, (5k+1), by antidiagonals.

Original entry on oeis.org

1, 6, 2, 31, 11, 3, 156, 56, 16, 4, 781, 281, 81, 21, 5, 3906, 1406, 406, 106, 26, 7, 19531, 7031, 2031, 531, 131, 36, 8, 97656, 35156, 10156, 2656, 656, 181, 41, 9, 488281, 175781, 50781, 13281, 3281, 906, 206, 46, 10, 2441406, 878906, 253906, 66406, 16406
Offset: 1

Views

Author

Clark Kimberling, Jun 12 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3 or mod 4, see A191655, A191663, A191667.
...
Each of the sequences (5n, n>1), (5n+1, n>1), (5n+2, n>=0), (5n+3, n>=0), (5n+4, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The ten sequences and dispersions are listed here:
...
A191702=dispersion of A008587 (5k, k>=1)
A191703=dispersion of A016861 (5k+1, k>=1)
A191704=dispersion of A016873 (5k+2, k>=0)
A191705=dispersion of A016885 (5k+3, k>=0)
A191706=dispersion of A016897 (5k+4, k>=0)
A191707=dispersion of A047201 (1, 2, 3, 4 mod 5 and >1)
A191708=dispersion of A047202 (0, 2, 3, 4 mod 5 and >1)
A191709=dispersion of A047207 (0, 1, 3, 4 mod 5 and >1)
A191710=dispersion of A032763 (0, 1, 2, 4 mod 5 and >1)
A191711=dispersion of A001068 (0, 1, 2, 3 mod 5 and >1)
...
EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
A191702 has 1st col A047201, all else A008587
A191703 has 1st col A047202, all else A016861
A191704 has 1st col A047207, all else A016873
A191705 has 1st col A032763, all else A016885
A191706 has 1st col A001068, all else A016897
A191707 has 1st col A008587, all else A047201
A191708 has 1st col A042968, all else A047203
A191709 has 1st col A042968, all else A047207
A191710 has 1st col A042968, all else A032763
A191711 has 1st col A042968, all else A001068
...
Regarding the dispersions A191670-A191673, there is a formula for sequences of the type "(a or b or c or d mod m)", (as in the relevant Mathematica programs):
...
If f(n)=(n mod 3), then (a,b,c,d,a,b,c,d,a,b,c,d,...) is given by a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n); so that for n>=1, "(a, b, c, d mod m)" is given by
a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n)+m*floor((n-1)/4)).

Examples

			Northwest corner:
1...6... 31....156...781
2...11...56....281...1406
3...16...81....406...2031
4...21...106...531...2656
5...26...131...656...3281
7...36...181...906...4531
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    f[n_] := 5n+1
    Table[f[n], {n, 1, 30}]  (* A016861 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191703 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191703 *)

A191704 Dispersion of A016873, (5k+2), by antidiagonals.

Original entry on oeis.org

1, 2, 3, 7, 12, 4, 32, 57, 17, 5, 157, 282, 82, 22, 6, 782, 1407, 407, 107, 27, 8, 3907, 7032, 2032, 532, 132, 37, 9, 19532, 35157, 10157, 2657, 657, 182, 42, 10, 97657, 175782, 50782, 13282, 3282, 907, 207, 47, 11, 488282, 878907, 253907, 66407, 16407, 4532
Offset: 1

Views

Author

Clark Kimberling, Jun 12 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3 or mod 4, see A191655, A191663, A191667.
...
Each of the sequences (5n, n>1), (5n+1, n>1), (5n+2, n>=0), (5n+3, n>=0), (5n+4, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The ten sequences and dispersions are listed here:
...
A191702=dispersion of A008587 (5k, k>=1)
A191703=dispersion of A016861 (5k+1, k>=1)
A191704=dispersion of A016873 (5k+2, k>=0)
A191705=dispersion of A016885 (5k+3, k>=0)
A191706=dispersion of A016897 (5k+4, k>=0)
A191707=dispersion of A047201 (1, 2, 3, 4 mod 5 and >1)
A191708=dispersion of A047202 (0, 2, 3, 4 mod 5 and >1)
A191709=dispersion of A047207 (0, 1, 3, 4 mod 5 and >1)
A191710=dispersion of A032763 (0, 1, 2, 4 mod 5 and >1)
A191711=dispersion of A001068 (0, 1, 2, 3 mod 5 and >1)
...
EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
A191702 has 1st col A047201, all else A008587
A191703 has 1st col A047202, all else A016861
A191704 has 1st col A047207, all else A016873
A191705 has 1st col A032763, all else A016885
A191706 has 1st col A001068, all else A016897
A191707 has 1st col A008587, all else A047201
A191708 has 1st col A042968, all else A047203
A191709 has 1st col A042968, all else A047207
A191710 has 1st col A042968, all else A032763
A191711 has 1st col A042968, all else A001068
...
Regarding the dispersions A191670-A191673, there is a formula for sequences of the type "(a or b or c or d mod m)", (as in the relevant Mathematica programs):
...
If f(n)=(n mod 3), then (a,b,c,d,a,b,c,d,a,b,c,d,...) is given by a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n); so that for n>=1, "(a, b, c, d mod m)" is given by
a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n)+m*floor((n-1)/4)).

Examples

			Northwest corner:
1...2....7.....32....157
3...12...57....282...1407
4...17...82....407...2032
5...22...107...532...2657
6...27...132...657...3282
6...37...182...907...4532
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    f[n_] := 5n-3
    Table[f[n], {n, 1, 30}] (* A016873 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191704 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191704 *)

A191705 Dispersion of A016873, (5k+3), by antidiagonals.

Original entry on oeis.org

1, 3, 2, 13, 8, 4, 63, 38, 18, 5, 313, 188, 88, 23, 6, 1563, 938, 438, 113, 28, 7, 7813, 4688, 2188, 563, 138, 33, 9, 39063, 23438, 10938, 2813, 688, 163, 43, 10, 195313, 117188, 54688, 14063, 3438, 813, 213, 48, 11, 976563, 585938, 273438, 70313, 17188
Offset: 1

Views

Author

Clark Kimberling, Jun 12 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3 or mod 4, see A191655, A191663, A191667.
...
Each of the sequences (5n, n>1), (5n+1, n>1), (5n+2, n>=0), (5n+3, n>=0), (5n+4, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The ten sequences and dispersions are listed here:
...
A191702=dispersion of A008587 (5k, k>=1)
A191703=dispersion of A016861 (5k+1, k>=1)
A191704=dispersion of A016873 (5k+2, k>=0)
A191705=dispersion of A016885 (5k+3, k>=0)
A191706=dispersion of A016897 (5k+4, k>=0)
A191707=dispersion of A047201 (1, 2, 3, 4 mod 5 and >1)
A191708=dispersion of A047202 (0, 2, 3, 4 mod 5 and >1)
A191709=dispersion of A047207 (0, 1, 3, 4 mod 5 and >1)
A191710=dispersion of A032763 (0, 1, 2, 4 mod 5 and >1)
A191711=dispersion of A001068 (0, 1, 2, 3 mod 5 and >1)
...
EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
A191702 has 1st col A047201, all else A008587
A191703 has 1st col A047202, all else A016861
A191704 has 1st col A047207, all else A016873
A191705 has 1st col A032763, all else A016885
A191706 has 1st col A001068, all else A016897
A191707 has 1st col A008587, all else A047201
A191708 has 1st col A042968, all else A047203
A191709 has 1st col A042968, all else A047207
A191710 has 1st col A042968, all else A032763
A191711 has 1st col A042968, all else A001068
...
Regarding the dispersions A191670-A191673, there is a formula for sequences of the type "(a or b or c or d mod m)", (as in the relevant Mathematica programs):
...
If f(n)=(n mod 3), then (a,b,c,d,a,b,c,d,a,b,c,d,...) is given by a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n); so that for n>=1, "(a, b, c, d mod m)" is given by a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n)+m*floor((n-1)/4)).

Examples

			Northwest corner:
1...3....13....63....313
2...8....38....188...938
4...18...88....438...2188
5...23...113...563...2813
6...28...138...688...3438
7...33...163...813...4063
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    f[n_] := 5n-2
    Table[f[n], {n, 1, 30}] (* A016885 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191705 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191705 *)

A191706 Dispersion of A016873, (5k+4), by antidiagonals.

Original entry on oeis.org

1, 4, 2, 19, 9, 3, 94, 44, 14, 5, 469, 219, 69, 24, 6, 2344, 1094, 344, 119, 29, 7, 11719, 5469, 1719, 594, 144, 34, 8, 58594, 27344, 8594, 2969, 719, 169, 39, 10, 292969, 136719, 42969, 14844, 3594, 844, 194, 49, 11, 1464844, 683594, 214844, 74219, 17969
Offset: 1

Views

Author

Clark Kimberling, Jun 12 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3 or mod 4, see A191655, A191663, A191667.
...
Each of the sequences (5n, n>1), (5n+1, n>1), (5n+2, n>=0), (5n+3, n>=0), (5n+4, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The ten sequences and dispersions are listed here:
...
A191702=dispersion of A008587 (5k, k>=1)
A191703=dispersion of A016861 (5k+1, k>=1)
A191704=dispersion of A016873 (5k+2, k>=0)
A191705=dispersion of A016885 (5k+3, k>=0)
A191706=dispersion of A016897 (5k+4, k>=0)
A191707=dispersion of A047201 (1, 2, 3, 4 mod 5 and >1)
A191708=dispersion of A047202 (0, 2, 3, 4 mod 5 and >1)
A191709=dispersion of A047207 (0, 1, 3, 4 mod 5 and >1)
A191710=dispersion of A032763 (0, 1, 2, 4 mod 5 and >1)
A191711=dispersion of A001068 (0, 1, 2, 3 mod 5 and >1)
...
EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
A191702 has 1st col A047201, all else A008587
A191703 has 1st col A047202, all else A016861
A191704 has 1st col A047207, all else A016873
A191705 has 1st col A032763, all else A016885
A191706 has 1st col A001068, all else A016897
A191707 has 1st col A008587, all else A047201
A191708 has 1st col A042968, all else A047203
A191709 has 1st col A042968, all else A047207
A191710 has 1st col A042968, all else A032763
A191711 has 1st col A042968, all else A001068
...
Regarding the dispersions A191670-A191673, there is a formula for sequences of the type "(a or b or c or d mod m)", (as in the relevant Mathematica programs):
...
If f(n)=(n mod 3), then (a,b,c,d,a,b,c,d,a,b,c,d,...) is given by a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n); so that for n>=1, "(a, b, c, d mod m)" is given by
a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n)+m*floor((n-1)/4)).

Examples

			Northwest corner:
1...4....19....94....469
2...9....44....219...1094
3...14...69....344...1719
5...24...119...594...2969
6...29...144...719...3594
7...34...169...844...4219
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    f[n_] := 5n-1
    Table[f[n], {n, 1, 30}] (* A016897 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191706 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191706 *)
Showing 1-10 of 45 results. Next