cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 41 results. Next

A030433 Primes of form 10*k + 9.

Original entry on oeis.org

19, 29, 59, 79, 89, 109, 139, 149, 179, 199, 229, 239, 269, 349, 359, 379, 389, 409, 419, 439, 449, 479, 499, 509, 569, 599, 619, 659, 709, 719, 739, 769, 809, 829, 839, 859, 919, 929, 1009, 1019, 1039, 1049, 1069, 1109, 1129, 1229, 1249, 1259, 1279, 1289
Offset: 1

Views

Author

Keywords

Comments

Also primes of form 5*k + 4.
5 is quadratic residue of primes of form 10*k-1. - Vincenzo Librandi, Jun 25 2014
Also, primes p such that 5 divides sigma(p), cf. A274397. - M. F. Hasler, Jul 10 2016
Conjecture: Primes p such that ((x+1)^5-1)/x has 2 distinct irreducible factors of degree 2 over GF(p). - Federico Provvedi, Apr 01 2018
The digital root of a(n) is 1, 2, 4, 5, 7 or 8. - Muniru A Asiru, Apr 28 2018
From Jianing Song, Sep 13 2022: (Start)
Primes p such that the ideal (p) factors into two prime ideals in Z[zeta_5], where zeta_5 = exp(2*Pi*i/5). Since Z[zeta_5] is a PID, this is equivalent to saying that this sequence lists primes p that are the product of two non-associate prime elements Z[zeta_5]. In particular, the factorization of p == 4 (mod 5) in Z[zeta_5] coincides with the factorization in Z[(1+sqrt(5))/2] (e.g., 19 = (8+3*sqrt(5))*(8-3*sqrt(5)) is the factorization of 19 in both Z[(1+sqrt(5))/2] and Z[zeta_5]).
Also primes p such that x^4 + x^3 + x^2 + x + 1 factors into two irreducible quadratic polynomials over GF(p) (cf. A327753). (End)

Crossrefs

Programs

  • GAP
    Filtered(List([1..500],n->10*n+9),IsPrime); # Muniru A Asiru, Apr 27 2018
  • Maple
    select(isprime,[seq(10*n+9,n=1..500)]); # Muniru A Asiru, Apr 27 2018
  • Mathematica
    Select[Prime@Range[210], Mod[ #, 10] == 9 &] (* Ray Chandler, Nov 07 2006 *)
    Select[Range[9, 1300, 10], PrimeQ] (* Harvey P. Dale, Jun 01 2012 *)
    Prime@Flatten@Position[Length@FactorList[((1+d)^5-1)/d,Modulus->#]&/@Prime@Range@200,3] (* Federico Provvedi, Apr 04 2018 *)
  • PARI
    select(n->n%10==9, primes(100)) \\ Charles R Greathouse IV, Apr 29 2015
    
  • PARI
    for(n=1, 1e3, if(isprime(p=10*n+9), print1(p, ", "))); \\ Altug Alkan, Apr 19 2018
    

Formula

a(n) = 10*A102700(n) + 9.
Union of A132234 and A132236. - Ray Chandler, Apr 07 2009
Intersection of A000040 and A017377. - Iain Fox, Dec 30 2017

Extensions

Extended by Ray Chandler, Nov 07 2006

A106621 a(n) = numerator of n/(n+20).

Original entry on oeis.org

0, 1, 1, 3, 1, 1, 3, 7, 2, 9, 1, 11, 3, 13, 7, 3, 4, 17, 9, 19, 1, 21, 11, 23, 6, 5, 13, 27, 7, 29, 3, 31, 8, 33, 17, 7, 9, 37, 19, 39, 2, 41, 21, 43, 11, 9, 23, 47, 12, 49, 5, 51, 13, 53, 27, 11, 14, 57, 29, 59, 3, 61, 31, 63, 16, 13, 33, 67, 17, 69, 7, 71, 18, 73, 37, 15, 19, 77, 39, 79
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

Contains as subsequences A026741, A017281, A017305, A005408, A017353, and A017377. - Luce ETIENNE, Nov 04 2018
Multiplicative and also a strong divisibility sequence: gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. - Peter Bala, Feb 24 2019

Crossrefs

Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106620 (k = 13 thru 19).

Programs

Formula

a(n) = lcm(20, n)/20. - Zerinvary Lajos, Jun 12 2009
a(n) = n/gcd(n, 20). - Andrew Howroyd, Jul 25 2018
From Luce ETIENNE, Nov 04 2018: (Start)
a(n) = 9*a(n-20) - 36*a(n-40) + 84*a(n-60) - 126*a(n-80) + 126*a(n-100) - 84*a(n-120) + 36*a(n-140) - 9*a(n-160) + a(n-180).
a(n) = (5*(119*m^9 - 4923*m^8 + 86250*m^7 - 832230*m^6 + 4807887*m^5 - 16882299*m^4 + 34770400*m^3 - 37855620m^2 + 16581744*m + 54432)*floor(n/10) + 72*m*(3*m^8 - 120*m^7 + 2030*m^6 - 18900*m^5 + 105329*m^4 - 356580*m^3 + 706220*m^2 - 733200*m + 300258) + ((19*m^9 - 855*m^8 + 15810*m^7 - 154350*m^6 + 849387*m^5 - 2597175*m^4 + 4037840*m^3 - 2600100*m^2 + 540144*m - 90720)*floor(n/10) - 72*m*(m^7 - 35*m^6 + 490*m^5 - 3500*m^4 + 13489*m^3 - 27335*m^2 + 26340*m - 9450))*(-1)^floor(n/10))/362880 where m = (n mod 10). (End)
From Peter Bala, Feb 24 2019: (Start)
a(n) = n/gcd(n,20) is a quasi-polynomial in n since gcd(n,20) is a purely periodic sequence of period 20.
O.g.f.: F(x) - F(x^2) - F(x^4) - 4*F(x^5) + 4*F(x^10) + 4*F(x^20), where F(x) = x/(1 - x)^2.
O.g.f. for reciprocals: Sum_{n >= 1} x^n/a(n) = Sum_{d divides 20} (phi(d)/d) * log(1/(1 - x^d)) = log(1/(1 - x)) + (1/2)*log(1/(1 - x^2)) + (2/4)*log(1/(1 - x^4)) + (4/5)*log(1/(1 - x^5)) + (4/10)*log(1/(1 - x^10)) + (8/20)*log(1/(1 - x^20)), where phi(n) denotes the Euler totient function A000010. (End)
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(2^e) = 2^max(0, e-2), a(5^e) = 5^max(0,e-1), and a(p^e) = p^e otherwise.
Dirichlet g.f.: zeta(s-1)*(1 - 1/2^s - 1/4^s - 4/5^s + 4/10^s + 4/20^s).
Sum_{k=1..n} a(k) ~ (231/800) * n^2. (End)

Extensions

Keyword:mult added by Andrew Howroyd, Jul 25 2018

A273669 Decimal representation ends with either 2 or 9.

Original entry on oeis.org

2, 9, 12, 19, 22, 29, 32, 39, 42, 49, 52, 59, 62, 69, 72, 79, 82, 89, 92, 99, 102, 109, 112, 119, 122, 129, 132, 139, 142, 149, 152, 159, 162, 169, 172, 179, 182, 189, 192, 199, 202, 209, 212, 219, 222, 229, 232, 239, 242, 249, 252, 259, 262, 269, 272, 279, 282, 289, 292, 299, 302, 309, 312, 319, 322, 329, 332, 339
Offset: 1

Views

Author

Antti Karttunen, Aug 06 2016

Keywords

Comments

Natural numbers not in A273664.

Crossrefs

Sequences A017293 and A017377 interleaved.
Cf. also A273664, A249824, A275716.

Programs

  • Mathematica
    Select[Range@ 340, MemberQ[{2, 9}, Mod[#, 10]] &] (* or *)
    Table[{10 n + 2, 10 n + 9}, {n, 0, 33}] // Flatten (* or *)
    CoefficientList[Series[(-5/(1 - x) + (11 - x)/(-1 + x)^2 - 2/(1 + x))/2, {x, 0, 67}], x] (* Michael De Vlieger, Aug 07 2016 *)
  • Scheme
    (define (A273669 n) (+ (* 10 (/ (+ (- n 2) (if (odd? n) 1 0)) 2)) (if (odd? n) 2 9)))

Formula

a(n) = 10*(((n-2)+A000035(n))/2) + 2 [when n is odd], or + 9 [when n is even].
For n >= 5, a(n) = 2*a(n-2) - a(n-4).
a(n) = A126760(A084967(n)).
a(n) = A249746((3*A249745(n))-1).
Other identities. For all n >= 1:
A084967(n) = 5*A007310(n) = A007310(a(n)).
G.f.: x*(x^2+7*x+2)/((x+1)*(x-1)^2).
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt((1+1/sqrt(5))/2)*phi^2*Pi/10 - log(phi)/(2*sqrt(5)) - log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 15 2023

A135705 a(n) = 10*binomial(n,2) + 9*n.

Original entry on oeis.org

0, 9, 28, 57, 96, 145, 204, 273, 352, 441, 540, 649, 768, 897, 1036, 1185, 1344, 1513, 1692, 1881, 2080, 2289, 2508, 2737, 2976, 3225, 3484, 3753, 4032, 4321, 4620, 4929, 5248, 5577, 5916, 6265, 6624, 6993, 7372, 7761, 8160, 8569, 8988, 9417, 9856, 10305, 10764
Offset: 0

Views

Author

N. J. A. Sloane, Mar 04 2008

Keywords

Comments

Also, second 12-gonal (or dodecagonal) numbers. Identity for the numbers b(n)=n*(h*n+h-2)/2 (see Crossrefs): Sum_{i=0..n} (b(n)+i)^2 = (Sum_{i=n+1..2*n} (b(n)+i)^2) + h*(h-4)*A000217(n)^2 for n>0. - Bruno Berselli, Jan 15 2011
Sequence found by reading the line from 0, in the direction 0, 28, ..., and the line from 9, in the direction 9, 57, ..., in the square spiral whose vertices are the generalized 12-gonal numbers A195162. - Omar E. Pol, Jul 24 2012
Bisection of A195162. - Omar E. Pol, Aug 04 2012

Crossrefs

Second n-gonal numbers: A005449, A014105, A147875, A045944, A179986, A033954, A062728, this sequence.
Cf. A195162.

Programs

  • GAP
    List([0..50], n-> n*(5*n+4)); # G. C. Greubel, Jul 04 2019
  • Magma
    [n*(5*n+4): n in [0..50]]; // G. C. Greubel, Jul 04 2019
    
  • Mathematica
    LinearRecurrence[{3,-3,1}, {0,9,28}, 50] (* or *) Table[5*n^2 + 4*n, {n,0,50}] (* G. C. Greubel, Oct 29 2016 *)
    Table[10 Binomial[n,2]+9n,{n,0,60}] (* Harvey P. Dale, Jun 14 2023 *)
  • PARI
    a(n) = 10*binomial(n,2) + 9*n \\ Charles R Greathouse IV, Jun 11 2015
    
  • Sage
    [n*(5*n+4) for n in (0..50)] # G. C. Greubel, Jul 04 2019
    

Formula

From R. J. Mathar, Mar 06 2008: (Start)
O.g.f.: x*(9+x)/(1-x)^3.
a(n) = n*(5*n+4). (End)
a(n) = a(n-1) + 10*n - 1 (with a(0)=0). - Vincenzo Librandi, Nov 24 2009
a(n) = Sum_{i=0..n-1} A017377(i) for n>0. - Bruno Berselli, Jan 15 2011
a(n) = A131242(10n+8). - Philippe Deléham, Mar 27 2013
Sum_{n>=1} 1/a(n) = 5/16 + sqrt(1 + 2/sqrt(5))*Pi/8 - 5*log(5)/16 - sqrt(5)*log((1 + sqrt(5))/2)/8 = 0.2155517745488486003038... . - Vaclav Kotesovec, Apr 27 2016
From G. C. Greubel, Oct 29 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: x*(9 + 5*x)*exp(x). (End)
a(n) = A003154(n+1) - A000290(n+1). - Leo Tavares, Mar 29 2022

A346950 Positive integers k that are the product of two integers ending with 3.

Original entry on oeis.org

9, 39, 69, 99, 129, 159, 169, 189, 219, 249, 279, 299, 309, 339, 369, 399, 429, 459, 489, 519, 529, 549, 559, 579, 609, 639, 669, 689, 699, 729, 759, 789, 819, 849, 879, 909, 939, 949, 969, 989, 999, 1029, 1059, 1079, 1089, 1119, 1149, 1179, 1209, 1219, 1239, 1269
Offset: 1

Views

Author

Stefano Spezia, Aug 08 2021

Keywords

Comments

All the terms end with 9 (A017377).

Examples

			9 = 3*3, 39 = 3*13, 69 = 3*23, 99 = 3*33, 129 = 3*43, 159 = 3*53, 169 = 13*13, 189 = 3*63, ...
		

Crossrefs

Cf. A017377 (supersequence), A053742 (ending with 5), A139245 (ending with 2), A324297 (ending with 6), A346951, A346952, A346953.

Programs

  • Mathematica
    a={}; For[n=0, n<=250, n++, For[k=0, k<=n, k++, If[Mod[10*n+9, 10*k+3]==0 && Mod[(10*n+9)/(10*k+3), 10]==3&& 10*n+9>Max[a], AppendTo[a, 10*n+9]]]]; a
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(3, lim//3+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(1270)) # Michael S. Branicky, Aug 08 2021

Formula

Limit_{n->oo} a(n)/a(n-1) = 1.

A346952 Number of positive integers with n digits that are the product of two integers ending with 3.

Original entry on oeis.org

1, 3, 37, 398, 4303, 45765, 480740, 5005328, 51770770, 532790460, 5461696481, 55814395421, 568944166801, 5787517297675
Offset: 1

Views

Author

Stefano Spezia, Aug 08 2021

Keywords

Comments

a(n) is the number of n-digit numbers in A346950.

Crossrefs

Cf. A017377, A052268, A346509 (ending with 1), A337855 (ending with 5), A337856 (ending with 6), A346950.

Programs

  • Mathematica
    Table[{lo,hi}={10^(n-1),10^n};Length@Select[Union@Flatten@Table[a*b,{a,3,Floor[hi/3],10},{b,a,Floor[hi/a],10}],lo<#Giorgos Kalogeropoulos, Aug 16 2021 *)
  • Python
    def a(n):
      lo, hi = 10**(n-1), 10**n
      return len(set(a*b for a in range(3, hi//3+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi))
    print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Aug 09 2021

Formula

a(n) < A052268(n).
Conjecture: Lim_{n->infinity} a(n)/a(n-1) = 10.

Extensions

a(6)-a(11) from Michael S. Branicky, Aug 09 2021
a(12)-a(14) from Martin Ehrenstein, Aug 22 2021

A348054 Positive integers that are the product of two integers ending with 7.

Original entry on oeis.org

49, 119, 189, 259, 289, 329, 399, 459, 469, 539, 609, 629, 679, 729, 749, 799, 819, 889, 959, 969, 999, 1029, 1099, 1139, 1169, 1239, 1269, 1309, 1369, 1379, 1449, 1479, 1519, 1539, 1589, 1649, 1659, 1729, 1739, 1799, 1809, 1819, 1869, 1939, 1989, 2009, 2079, 2109
Offset: 1

Views

Author

Stefano Spezia, Sep 26 2021

Keywords

Examples

			49 = 7*7, 119 = 7*17, 189 = 7*27, 259 = 7*37, 289 = 17*17, 329 = 7*47, 399 = 7*57, ...
		

Crossrefs

Cf. A017377 (supersequence), A053742 (ending with 5), A139245 (ending with 2), A324297 (ending with 6), A346950 (ending with 3), A347253 (ending with 4), A348055.

Programs

  • Mathematica
    a={}; For[n=0, n<=210, n++, For[k=0, k<=n, k++, If[Mod[10*n+9, 10*k+7]==0 && Mod[(10*n+9)/(10*k+7), 10]==7 && 10*n+9>Max[a], AppendTo[a, 10*n+9]]]]; a
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(7, lim//7+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(2110)) # Michael S. Branicky, Sep 26 2021

Formula

Lim_{n->infinity} a(n)/a(n-1) = 1.

A352970 Carmichael numbers ending in 9.

Original entry on oeis.org

1729, 294409, 1033669, 1082809, 1773289, 5444489, 7995169, 8719309, 17098369, 19384289, 23382529, 26921089, 37964809, 43620409, 45890209, 50201089, 69331969, 84311569, 105309289, 114910489, 146843929, 168659569, 172947529, 180115489, 188516329, 194120389, 214852609, 228842209, 230996949, 246446929, 271481329
Offset: 1

Views

Author

Omar E. Pol, Apr 12 2022

Keywords

Comments

The first term is the Hardy-Ramanujan number.

Crossrefs

Intersection of A002997 and A017377.
Subsequence of A053181.

Programs

  • Mathematica
    Select[10*Range[0, 3*10^7] + 9, CompositeQ[#] && Divisible[# - 1, CarmichaelLambda[#]] &] (* Amiram Eldar, May 28 2022 *)
  • Python
    from itertools import islice
    from sympy import factorint, nextprime
    def A352970_gen(): # generator of terms
        p, q = 3, 5
        while True:
            for n in range(p+11-((p+2) % 10),q,10):
                f = factorint(n)
                if max(f.values()) == 1 and not any((n-1) % (p-1) for p in f):
                    yield n
            p, q = q, nextprime(q)
    A352970_list = list(islice(A352970_gen(),5)) # Chai Wah Wu, May 11 2022

A080719 Replace decimal digits with their binary values and convert back to decimal representation.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 3, 6, 7, 12, 13, 14, 15, 24, 25, 4, 5, 10, 11, 20, 21, 22, 23, 40, 41, 6, 7, 14, 15, 28, 29, 30, 31, 56, 57, 8, 9, 18, 19, 36, 37, 38, 39, 72, 73, 10, 11, 22, 23, 44, 45, 46, 47, 88, 89, 12, 13, 26, 27, 52, 53, 54, 55, 104, 105, 14, 15, 30, 31, 60, 61, 62
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 06 2003

Keywords

Comments

m is a local maximum iff m == 9 modulo 10 (see A017377).
A257831 seen as binary numbers: A007088(a(n)) = A257831(n). - Reinhard Zumkeller, May 10 2015

Examples

			n=27 -> '2''7' -> '10''111' -> '10111' -> 23: a(27)=23.
See also A257831.
		

Crossrefs

Programs

  • Haskell
    import Data.Maybe (mapMaybe)
    a080719 = foldr (\b v -> 2 * v + b) 0 .
               concat . mapMaybe (flip lookup bin) . a031298_row
                where bin = zip [0..9] a030308_tabf
    -- Reinhard Zumkeller, May 10 2015
    
  • Mathematica
    Table[FromDigits[Flatten[IntegerDigits[#,2]&/@IntegerDigits[n]],2],{n,80}] (* Harvey P. Dale, Aug 30 2014 *)
  • Python
    def A080719(n):
        return int(''.join((format(int(d),'b') for d in str(n))),2)
    # Chai Wah Wu, May 10 2015

Extensions

a(0)=0 prepended and offset changed by Reinhard Zumkeller, May 10 2015

A273374 Squares ending in digit 9.

Original entry on oeis.org

9, 49, 169, 289, 529, 729, 1089, 1369, 1849, 2209, 2809, 3249, 3969, 4489, 5329, 5929, 6889, 7569, 8649, 9409, 10609, 11449, 12769, 13689, 15129, 16129, 17689, 18769, 20449, 21609, 23409, 24649, 26569, 27889, 29929, 31329, 33489, 34969, 37249, 38809
Offset: 1

Views

Author

Vincenzo Librandi, May 21 2016

Keywords

Comments

A quasipolynomial of order two and degree two: a(n) = 25n^2 - 30n + 9 if n is even and 25n^2 - 20n + 4 if n is odd. - Charles R Greathouse IV, Nov 03 2021

Crossrefs

Cf. A017377 (numbers ending in 9), A017379 (cubes ending in 9).
Cf. similar sequences listed in A273373.

Programs

  • Magma
    /* By definition: */ [n^2: n in [0..200] | Modexp(n,2,10) eq 9];
    
  • Magma
    [6+(50*(n-1)*n-5*(2*n-1)*(-1)^n+1)/2: n in [1..50]];
    
  • Mathematica
    Table[6 + (50 (n - 1) n - 5 (2 n - 1) (-1)^n + 1)/2, {n, 1, 50}]
  • PARI
    a(n)=(5*n-3+n%2)^2 \\ Charles R Greathouse IV, Nov 03 2021

Formula

G.f.: x*(9 + 40*x + 102*x^2 + 40*x^3 + 9*x^4)/((1 + x)^2*(1 - x)^3).
a(n) = 6 + (50*(n-1)*n - 5*(2*n-1)*(-1)^n + 1)/2.
a(n) = A063226(n)^2. - Seiichi Manyama, May 25 2016
Sum_{n>=1} 1/a(n) = Pi^2*(3-sqrt(5))/50. - Amiram Eldar, Feb 16 2023

Extensions

Corrected and extended by Bruno Berselli, May 21 2016
Showing 1-10 of 41 results. Next