A048251
a(n) is the smallest number whose sum of divisors is 6^n.
Original entry on oeis.org
1, 5, 22, 102, 510, 3210, 17490, 112890, 600270, 3466470, 20205570, 118879530, 697118730, 3949737330, 24217298490, 143487592710, 841422307110, 4973562896610, 29520886859310, 180254162529210, 1052751138726210, 6301225298627490, 37854941354933010, 224270177470178070
Offset: 0
sigma(k) = 1296 = 6^4 for each k in {510, 642, 710, 742, 782, 795, 862, 935, 1177, 1207, 1219}; the smallest of these is a(4)=510.
A019423
Numbers whose sum of divisors is a fifth power.
Original entry on oeis.org
1, 21, 31, 651, 889, 3210, 3498, 3710, 3882, 3910, 4310, 4922, 4982, 5182, 5457, 5885, 6035, 6095, 6307, 6797, 7117, 7327, 7597, 24573, 27559, 71193, 82110, 90510, 94981, 97410, 98671, 99301, 99510, 100110, 103362, 104622, 107778, 108438, 108822
Offset: 1
- Marius A. Burtea, Table of n, a(n) for n = 1..3648 (terms 1..1000 from Donovan Johnson; a(1211) re-indexed and duplicate a(2311) removed by _Georg Fischer_, Mar 21 2022).
- Frits Beukers, Florian Luca and Frans Oort, Power Values of Divisor Sums, The American Mathematical Monthly, Vol. 119, No. 5 (May 2012), pp. 373-380.
-
[n:n in [1..10000]| IsPower(SumOfDivisors(n),5)]; // Marius A. Burtea, Apr 17 2019
-
lista(nn) = {for (i=1, nn, s = sigma(i); if (s == 1 || ispower(s, 5), print1(i, ", ")););} \\ Michel Marcus, Jun 12 2013
A303994
Numbers whose sum of divisors is the fourth power of one of their divisors.
Original entry on oeis.org
1, 510, 642, 3394440, 3629640, 3653640, 3663240, 3673080, 3701160, 3736920, 3901080, 3958680, 4077960, 4137240, 4240920, 4251480, 4256520, 4273320, 4274520, 4319880, 7300854, 12798240, 13362720, 14405664, 15170820, 16173024, 16342368, 16354884, 16361184, 16957668, 17113404
Offset: 1
Divisors of 510 are 1, 2, 3, 5, 6, 10, 15, 17, 30, 34, 51, 85, 102, 170, 255, 510 and their sum is 1296 = 6^4.
-
with(numtheory): P:=proc(q) local a,k,n;
for n from 1 to q do a:=sort([op(divisors(n))]);
for k from 1 to nops(a) do if sigma(n)=a[k]^4 then print(n); break; fi; od; od; end: P(10^9);
-
Select[Range[17114000],MemberQ[Divisors[#]^4,DivisorSigma[1,#]]&] (* Harvey P. Dale, Jul 22 2021 *)
-
isok(n) = (n==1) || (ispower(s=sigma(n), 4) && !(n % sqrtnint(s, 4))); \\ Michel Marcus, May 05 2018
A019424
Numbers whose sum of divisors is a sixth power.
Original entry on oeis.org
1, 2667, 3937, 17490, 19410, 22578, 24610, 24910, 25466, 25910, 26554, 26818, 27285, 29342, 29733, 29762, 31102, 31535, 32043, 32997, 33985, 35585, 36635, 37985, 39697, 41393, 41837, 42347, 44047, 45637, 45739, 45937, 46117, 172011, 253921, 640737
Offset: 1
sigma(2667) = 1+3+7+21+127+381+889+2667 = 4096 = 4^6.
sigma(3937) = 1+31+127+3937 = 4096 = 4^6.
-
[n:n in [1..100000]| IsPower(SumOfDivisors(n),6)]; // Marius A. Burtea, Apr 17 2019
-
Select[Range[700000],IntegerQ[Surd[DivisorSigma[1,#],6]]&] (* Harvey P. Dale, Apr 19 2019 *)
-
c=0; for(n=1, 306455560, if(ispower(sigma(n), 6), c++; write("b019424.txt", c " " n))) /* Donovan Johnson, Jun 13 2013 */
A048256
Numbers whose sum of divisors is 6^6 = 46656.
Original entry on oeis.org
17490, 19410, 22578, 24610, 24910, 25466, 25910, 26554, 26818, 27285, 29342, 29733, 29762, 31102, 31535, 32043, 32997, 33985, 35585, 36635, 37985, 39697, 41393, 41837, 42347, 44047, 45637, 45739, 45937, 46117
Offset: 1
The divisors of 19410 are 1, 2, 3, 5, 6, 10, 15, 30, 647, 1294, 1941, 3235, 3882, 6470, 9705, and 19410; their sum is 46656, so 19410 is in the sequence.
A048257
Integers whose sum of divisors is a 7th power.
Original entry on oeis.org
1, 93, 127, 11811, 112890, 120054, 124338, 127330, 132770, 133998, 134090, 137058, 138754, 139962, 146710, 148665, 148810, 149534, 153986, 155510, 160215, 161194, 164985, 167134, 170986, 173098, 183687, 184682, 187143, 191913, 198485, 206823, 206965, 207687
Offset: 1
Divisors(11811) = {1,3,31,93,127,381,3937,11811} and sigma(11811) = 16384 = 4^7.
-
filter:= n -> type(map(t -> t[2]/7, ifactors(numtheory:-sigma(n))[2]),list(integer)):
select(filter, [$1..21*10^4]); # Robert Israel, May 09 2018
-
Select[Range[210000],IntegerQ[Surd[DivisorSigma[1,#],7]]&] (* Harvey P. Dale, Jun 09 2017 *)
-
isok(n) = ispower(sigma(n), 7); \\ Michel Marcus, Dec 20 2013
A048258
Integers whose sum of divisors is an 8th power.
Original entry on oeis.org
1, 217, 57337, 600270, 621690, 669990, 685290, 693294, 693770, 699810, 725934, 747670, 769930, 774894, 782598, 805970, 813378, 823938, 835670, 839802, 854930, 865490, 873334, 895594, 918435, 920414, 923410, 931634, 935715, 959565, 965174, 969034, 969206
Offset: 1
Divisors(217) = {1,7,31,217}, sum = 256 = 2^8.
Divisors(57337) = {1,7,8191,57337}, sum = 65536 = 4^8.
Divisors(1676377) = {1,647,2591,1676377}, sum = 1679616 = 6^8.
A048252
Largest number whose sum of divisors is 6^n.
Original entry on oeis.org
1, 5, 22, 187, 1219, 7597, 46117, 278857, 1676377, 10067797, 60450517, 362758177, 2176626817, 13060193977, 78363525817, 470183516857, 2820894903487, 16926601754197, 101559860054047, 609359671998037, 3656158318966357
Offset: 0
-
a(n) = {sn = 6^n; forstep(x=sn, 1, -1, if (sigma(x) == sn, return (x)););} \\ Michel Marcus, Dec 15 2013
A048253
a(n) is the number of integers whose sum of divisors is 6^n.
Original entry on oeis.org
1, 1, 1, 5, 11, 18, 30, 48, 85, 148, 250, 415, 669, 1066, 1697, 2635, 4036, 6111, 9137, 13540, 19930, 29098, 42184, 60655, 86598, 122821, 173314, 243469, 340329, 473221, 654779, 901741, 1236668, 1689322, 2298592, 3115200, 4206016, 5658677, 7588039
Offset: 0
For n=3, sigma(1,k) = 6^3 = 216 for each of 5 integers: 102, 110, 142, 159, and 187, so a(3) = 5.
-
With[{s = Array[DivisorSigma[1, #] &, 6^8]}, Array[Count[s, 6^#] &, Log[6, Length@ s] + 1, 0]] (* Michael De Vlieger, May 14 2018 *)
-
a(n) = sum(k=1, 6^n, sigma(k)==6^n); \\ Michel Marcus, May 14 2018
A063869
Least k such that sigma(k)=m^n for some m>1.
Original entry on oeis.org
2, 3, 7, 217, 21, 2667, 93, 217, 381, 651, 2752491, 2667, 8191, 11811, 24573, 57337, 82677, 172011, 393213, 761763, 1572861, 2752491, 5332341, 11010027, 21845397, 48758691, 85327221, 199753347, 341310837, 677207307, 1398273429, 3220807683
Offset: 1
For n = 11, sigma(a(n)) = sigma(2752491) = sigma(3 * 7 * 131071) = 4^11.
-
d={2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253}; nn=3700; t=Table[Infinity, {nn}]; t[[1]]=2; u={0}; k=1; While[2+d[[k]]<=nn, mer=2^d[[k]]-1; Do[a=u[[i]]+d[[k]]; If[a<=nn, If[u[[i]]==0, t[[a]]=Min[t[[a]], mer], t[[a]]=Min[t[[a]], t[[u[[i]]]]*mer]]], {i, Length[u]}]; u=Union[u, u+d[[k]]]; k++ ]; Do[If[t[[i]]==Infinity, t[[i]]=t[[2i]]], {i, nn}]; t (* T. D. Noe, Oct 13 2006 *)
c[] = 0; c[1] = 2; r = 1; Do[S = If[# > 1, Rest@ Divisors@ #, 0] &[GCD @@ FactorInteger[DivisorSigma[1, i]][[All, -1]]]; If[Length[S] > 0, Map[If[c[#] == 0, Set[c[#], i]] &, S]; If[# > r, r = #] &@ Max@ S], {i, 2^22}]; TakeWhile[Array[c, r], # > 0 &] (* _Michael De Vlieger, May 23 2022 *)
-
a(n) = my(k=2); while (!ispower(sigma(k), n), k++); k; \\ Michel Marcus, May 23 2022
Showing 1-10 of 13 results.
Comments