A168560 Incorrect duplicate of A019446.
1, 2, 2, 3, 4, 4, 5, 5, 6, 10, 7, 8, 9, 9, 10, 10, 11, 12, 12, 13, 13
Offset: 1
Keywords
Crossrefs
Cf. A019446.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a005206 n = a005206_list !! n a005206_list = 0 : zipWith (-) [1..] (map a005206 a005206_list) -- Reinhard Zumkeller, Feb 02 2012, Aug 07 2011
a005206 = sum . zipWith (*) a000045_list . a213676_row . a000201 . (+ 1) -- Reinhard Zumkeller, Mar 10 2013
[Floor((n+1)*(1+Sqrt(5))/2)-n-1: n in [0..80]]; // Vincenzo Librandi, Nov 19 2016
H:=proc(n) option remember; if n=0 then 0 elif n=1 then 1 else n-H(H(n-1)); fi; end proc: seq(H(n),n=0..76);
a[0] = 0; a[n_] := a[n] = n - a[a[n - 1]]; Array[a, 77, 0] (* Second program: *) Fold[Append[#1, #2 - #1[[#1[[#2]] + 1 ]] ] &, {0}, Range@ 76] (* Michael De Vlieger, Nov 13 2017 *)
first(n)=my(v=vector(n)); v[1]=1; for(k=2,n, v[k]=k-v[v[k-1]]); concat(0,v) \\ Charles R Greathouse IV, Sep 02 2015
from math import isqrt def A005206(n): return (n+1+isqrt(5*(n+1)**2)>>1)-n-1 # Chai Wah Wu, Aug 09 2022
The sequence p=A008619 begins with 1,2,2,3,3,4,4,5,5,..., so that g(1)=(1). To form g(2), write g(1) and append 2 so that in g(2) this 2 has position p(2)=2: g(2)=(1,2). Then form g(3) by inserting 3 at position p(3)=2: g(3)=(1,3,2), and so on. The fractal sequence A194959 is formed as the concatenation g(1)g(2)g(3)g(4)g(5)...=(1,1,2,1,3,2,1,3,4,2,1,3,5,4,2,...). From _Werner Schulte_, May 27 2018: (Start) This sequence seen as a square array read by antidiagonals: n\k: 1 2 3 4 5 6 7 8 9 10 11 12 ... =================================================== 1 1 2 2 2 2 2 2 2 2 2 2 2 ... (see A040000) 2 1 3 4 4 4 4 4 4 4 4 4 4 ... (see A113311) 3 1 3 5 6 6 6 6 6 6 6 6 6 ... 4 1 3 5 7 8 8 8 8 8 8 8 8 ... 5 1 3 5 7 9 10 10 10 10 10 10 10 ... 6 1 3 5 7 9 11 12 12 12 12 12 12 ... 7 1 3 5 7 9 11 13 14 14 14 14 14 ... 8 1 3 5 7 9 11 13 15 16 16 16 16 ... 9 1 3 5 7 9 11 13 15 17 18 18 18 ... 10 1 3 5 7 9 11 13 15 17 19 20 20 ... etc. This sequence seen as a triangle read by rows: n\k: 1 2 3 4 5 6 7 8 9 10 11 12 ... ====================================================== 1 1 2 1 2 3 1 3 2 4 1 3 4 2 5 1 3 5 4 2 6 1 3 5 6 4 2 7 1 3 5 7 6 4 2 8 1 3 5 7 8 6 4 2 9 1 3 5 7 9 8 6 4 2 10 1 3 5 7 9 10 8 6 4 2 11 1 3 5 7 9 11 10 8 6 4 2 12 1 3 5 7 9 11 12 10 8 6 4 2 etc. (End)
r = 2; p[n_] := 1 + Floor[n/r] Table[p[n], {n, 1, 90}] (* A008619 *) g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]] f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]] f[20] (* A194959 *) row[n_] := Position[f[30], n]; u = TableForm[Table[row[n], {n, 1, 5}]] v[n_, k_] := Part[row[n], k]; w = Flatten[Table[v[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A057027 *) q[n_] := Position[w, n]; Flatten[ Table[q[n], {n, 1, 80}]] (* A064578 *) Flatten[FoldList[Insert[#1, #2, Floor[#2/2] + 1] &, {}, Range[10]]] (* Birkas Gyorgy, Jun 30 2012 *)
T(n,k) = min(k<<1-1,(n-k+1)<<1); \\ Kevin Ryde, Oct 09 2020
import Data.List (group) a001468 n = a001468_list !! n a001468_list = map length $ group a005206_list -- Reinhard Zumkeller, Aug 07 2011
Digits := 100: t := evalf( (1+sqrt(5))/2); A001468 := n-> floor((n+1)*t)-floor(n*t);
Table[Floor[GoldenRatio*(n + 1)] - Floor[GoldenRatio*n], {n, 0, 80}] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 14 2006 *) Nest[ Flatten[# /. {1 -> {1, 2}, 2 -> {1, 2, 2}}] &, {1}, 6] (* Robert G. Wilson v, May 20 2014 and corrected Apr 24 2017 following Clark Kimberling's email of Mar 22 2017 *) SubstitutionSystem[{1->{1,2},2->{1,2,2}},{1},{6}][[1]] (* Harvey P. Dale, Jan 31 2022 *)
a=[1];for(i=1,30,a=concat([a,vector(a[i],j,2),1]));a \\ Or compute as A001468(n)=A201(n+1)-A201(n) with A201(n)=(n+sqrtint(5*n^2))\2, working for n>=0 although A000201 is defined for n>=1. - M. F. Hasler, Oct 13 2017
def A001468(length): a = [1] for i in range(length): for _ in range(a[i]): a.append(2) a.append(1) if len(a)>=length: break return a[:length] # Nicholas Stefan Georgescu, Jun 02 2022
from math import isqrt def A001468(n): return (n+1+isqrt(m:=5*(n+1)**2)>>1)-(n+isqrt(m-10*n-5)>>1) # Chai Wah Wu, Aug 25 2022
a[1]=1; a[n_] := a[n]=Module[{s, v}, s=a/@Range[n-1]; For[v=Mod[ -Plus@@s, n], v<1||MemberQ[s, v], v+=n, Null]; v] lst = {1}; f[s_List] := Block[{k = 1, len = 1 + Length@ lst, t = Plus @@ lst}, While[ MemberQ[s, k] || Mod[k + t, len] != 0, k++ ]; AppendTo[lst, k]]; Nest[f, lst, 69] (* Robert G. Wilson v, May 17 2010 *) Fold[Append[#1, #2 Ceiling[#2/GoldenRatio] - Total[#1]] &, {1}, Range[2, 70]] (* Birkas Gyorgy, May 25 2012 *)
al(n)=local(v,s,fnd);v=vector(n);v[1]=s=1;for(k=2,n,fnd=0;for(i=1,k-1,if(v[i]==s,fnd=1;break));v[k]=if(fnd,s+k,s);s+=fnd);v \\ Franklin T. Adams-Watters, May 20 2010
A019444_upto(N, c=0, A=Vec(1, N))={for(n=2, N, A[n]||(#AM. F. Hasler, Nov 27 2019
p(1)=(1); p(2)=(2,1); p(3)=(2,1,3); p(4)=(2,4,1,3). As a triangular array (see A194832), first nine rows: 1 2 1 2 1 3 2 4 1 3 5 2 4 1 3 5 2 4 1 6 3 5 2 7 4 1 6 3 5 2 7 4 1 6 3 8 5 2 7 4 9 1 6 3 8
r = (1 + Sqrt[5])/2; t[n_] := Table[FractionalPart[k*r], {k, 1, n}]; f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]] (* A054065 *) TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]] row[n_] := Position[f, n]; u = TableForm[Table[row[n], {n, 1, 20}]] g[n_, k_] := Part[row[n], k]; p = Flatten[Table[g[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A054069 *) q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A054068 *) (* Clark Kimberling, Sep 03 2011 *) Flatten[Table[Ordering[Table[FractionalPart[GoldenRatio k], {k, n}]], {n, 10}]] (* Birkas Gyorgy, Jun 30 2012 *)
t:=(1+sqrt(5))/2: a:=n->n+1+add(floor((n-k)/t),k=0..n): seq(a(n),n=0..55); # Muniru A Asiru, Oct 24 2018
Table[n + 1 + Sum[Floor[(n - k)/GoldenRatio], {k, 0, n}], {n, 0, 200}]
For n = 13: - 13 = 2^3 + 2^2 + 2^0, - so a(13) = A039834(4) + A039834(3) + A039834(1) = -3 + 2 + 1 = 0.
Table[Reverse[#].Fibonacci[-Range[Length[#]]] &@ IntegerDigits[n, 2], {n, 0, 69}] (* Rémy Sigrist, Aug 05 2022 *)
a(n) = { my (v=0, k); while (n, n-=2^k=valuation(n, 2); v+=fibonacci(-1-k)); return (v) }
from sympy import fibonacci def A356327(n): return sum(fibonacci(-a)*int(b) for a, b in enumerate(bin(n)[:1:-1],start=1)) # Chai Wah Wu, Aug 31 2022
Northwest corner: 1...2...4...7...11..16 3...6...10..15..21..28 5...8...12..17..23..30 9...13..18..24..31..39 14..20..27..35..44..54
r = GoldenRatio; p[n_] := 1 + Floor[n/r] Table[p[n], {n, 1, 90}] (* A019446 *) g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]] f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]] f[20] (* A194968 *) row[n_] := Position[f[30], n]; u = TableForm[Table[row[n], {n, 1, 5}]] v[n_, k_] := Part[row[n], k]; w = Flatten[Table[v[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194969 *) q[n_] := Position[w, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A194970 *)
Comments