cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 84 results. Next

A003254 The number m such that A003233(m) = A005206(A003234(n)).

Original entry on oeis.org

2, 4, 6, 8, 9, 10, 12, 14, 15, 17, 19, 21, 23, 24, 25, 27, 29, 31, 33, 34, 35, 37, 39, 40, 42, 44, 46, 48, 49, 50, 52, 54, 55, 57, 58, 59, 61, 63, 64, 65, 67, 69, 71, 73, 74, 75, 77, 79, 80, 82, 84, 86, 88, 89, 90, 92, 94, 95, 97, 98, 99, 101, 103, 104, 106
Offset: 1

Views

Author

Keywords

Comments

This is the function named p in [Carlitz]. - Eric M. Schmidt, Aug 14 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Extensions

More terms and a definition from Eric M. Schmidt, Aug 14 2014

A003258 The number m such that c'(m) = A005206(A003231(n)), where c'(m) = A249115(m) is the m-th positive integer not in A003231.

Original entry on oeis.org

2, 3, 5, 7, 8, 10, 12, 13, 15, 16, 18, 20, 21, 23, 24, 26, 28, 29, 31, 33, 34, 36, 37, 39, 41, 42, 44, 46, 47, 49, 50, 52, 54, 55, 57, 58, 60, 62, 63, 65, 67, 68, 70, 71, 73, 75, 76, 78, 80, 81, 83, 84, 86, 88, 89, 91, 92, 94, 96, 97, 99, 101, 102, 104, 105
Offset: 1

Views

Author

Keywords

Comments

This is the function named phi in the Carlitz-Scoville-Vaughan link. - Eric M. Schmidt, Aug 14 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Formula

Conjecture: a(n) = A078489(n) + n - 1. - Ralf Stephan, Feb 24 2004

Extensions

More terms and a definition from Eric M. Schmidt, Aug 17 2014
Definition edited by Eric M. Schmidt, Aug 07 2015

A247421 The number m such that A242094(m) = A005206(A003234(n)).

Original entry on oeis.org

2, 5, 7, 9, 11, 12, 14, 17, 19, 21, 24, 26, 28, 30, 31, 33, 36, 38, 40, 42, 43, 45, 47, 49, 51, 54, 56, 58, 60, 61, 63, 66, 68, 70, 72, 73, 75, 77, 79, 80, 82, 85, 87, 89, 91, 92, 94, 97, 99, 101, 104, 106, 108, 110, 111, 113, 116, 118, 120, 122, 123, 125, 127
Offset: 1

Views

Author

Eric M. Schmidt, Sep 16 2014

Keywords

Comments

This is the function named x in [Carlitz].

A372341 Let F be the set of lattice points {(x, y) in N^2 | A005206(x) <= y <= A005206(x) + x}; order the points of F by ascending Y-coordinates and then by ascending X-coordinates; the n-th and a(n)-th points of F are arranged symmetrically with respect to the line x = y.

Original entry on oeis.org

1, 2, 4, 3, 5, 7, 6, 8, 11, 16, 9, 12, 17, 22, 29, 10, 13, 18, 23, 30, 37, 14, 19, 24, 31, 38, 46, 56, 15, 20, 25, 32, 39, 47, 57, 67, 21, 26, 33, 40, 48, 58, 68, 79, 92, 27, 34, 41, 49, 59, 69, 80, 93, 106, 121, 28, 35, 42, 50, 60, 70, 81, 94, 107, 122, 137
Offset: 1

Views

Author

Rémy Sigrist, Apr 28 2024

Keywords

Comments

The set F is related to the "Quilt Tiling" described in Shectman's paper (see Links section) and has interesting properties: F is symmetrical with respect to the line x = y, for any n >= 0, there are n+1 points in F with a X-coordinate of n (or with a Y-coordinate of n).
This sequence is a self-inverse permutation of the positive integers with infinitely many fixed points (see A372231).

Examples

			The elements of F with coordinates <= 10 are as follows:
     |                       +-------------------+
  10 |                       | 56  57  58  59  60|
     |                       |                   |
   9 |                       | 46  47  48  49  50|
     |                   +---+                   |
   8 |                   | 37| 38  39  40  41  42|
     |               +---+---+                   |
   7 |               | 29  30| 31  32  33  34  35|
     |               |       |                   |
   6 |               | 22  23| 24  25  26  27  28|
     |           +---+-------+-------+---+-------+
   5 |           | 16  17  18| 19  20| 21|
     |           |           |       +---+
   4 |           | 11  12  13| 14  15|
     |       +---+           +-------+
   3 |       |  7|  8   9  10|
     |   +---+---+---+-------+
   2 |   |  4   5|  6|
     |   |       +---+
   1 |   |  2   3|
     +---+-------+
   0 |  1|
  ---+---+----------------------------------------
  y/x|  0   1   2   3   4   5   6   7   8   9  10
So a(1) = 1, a(2) = 2, a(3) = 4, a(5) = 5, a(6) = 7, a(8) = 8, a(9) = 11, a(10) = 16, a(12) = 12, a(13) = 17, etc.
		

Crossrefs

Cf. A005206, A345067, A372231 (fixed points).

A247424 Odd numbers not of the form 2*A005206(A003249(m)) - 1.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39, 41, 43, 45, 47, 49, 53, 55, 57, 59, 63, 65, 69, 71, 73, 75, 79, 81, 83, 85, 87, 89, 91, 95, 97, 99, 101, 105, 107, 109, 111, 113, 115, 117, 121, 123, 125, 127, 129, 131, 133, 137, 139, 141, 143
Offset: 1

Views

Author

Eric M. Schmidt, Sep 16 2014

Keywords

Comments

This is the function named y' in [Carlitz] (cf. proof of Thm. 7.31), which defines it as the complement of A247423.

A247425 A005206(A003259(n)).

Original entry on oeis.org

1, 3, 4, 6, 7, 9, 11, 12, 14, 16, 17, 19, 20, 22, 24, 25, 27, 28, 30, 32, 33, 35, 37, 38, 40, 41, 43, 45, 46, 48, 49, 51, 53, 54, 56, 58, 59, 61, 62, 64, 66, 67, 69, 71, 72, 74, 75, 77, 79, 80, 82, 83, 85, 87, 88, 90, 92, 93, 95, 96, 98, 100, 101, 103, 105
Offset: 1

Views

Author

Eric M. Schmidt, Sep 17 2014

Keywords

Comments

This is the function named psi in [Carlitz].

Formula

a(n) = A000201(n) - 1 for n of the form A000201(A003234(j)) + 1; a(n) = A000201(n) for other n. [Carlitz, Thm. 4.6].

A000201 Lower Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi), where phi = (1+sqrt(5))/2 = A001622.

Original entry on oeis.org

1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29, 30, 32, 33, 35, 37, 38, 40, 42, 43, 45, 46, 48, 50, 51, 53, 55, 56, 58, 59, 61, 63, 64, 66, 67, 69, 71, 72, 74, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 93, 95, 97, 98, 100, 101, 103, 105, 106, 108, 110
Offset: 1

Views

Author

Keywords

Comments

This is the unique sequence a satisfying a'(n)=a(a(n))+1 for all n in the set N of natural numbers, where a' denotes the ordered complement (in N) of a. - Clark Kimberling, Feb 17 2003
This sequence and A001950 may be defined as follows. Consider the maps a -> ab, b -> a, starting from a(1) = a; then A000201 gives the indices of a, A001950 gives the indices of b. The sequence of letters in the infinite word begins a, b, a, a, b, a, b, a, a, b, a, ... Setting a = 0, b = 1 gives A003849 (offset 0); setting a = 1, b = 0 gives A005614 (offset 0). - Philippe Deléham, Feb 20 2004
These are the numbers whose lazy Fibonacci representation (see A095791) includes 1; the complementary sequence (the upper Wythoff sequence, A001950) are the numbers whose lazy Fibonacci representation includes 2 but not 1.
a(n) is the unique monotonic sequence satisfying a(1)=1 and the condition "if n is in the sequence then n+(rank of n) is not in the sequence" (e.g. a(4)=6 so 6+4=10 and 10 is not in the sequence) - Benoit Cloitre, Mar 31 2006
Write A for A000201 and B for A001950 (the upper Wythoff sequence, complement of A). Then the composite sequences AA, AB, BA, BB, AAA, AAB,...,BBB,... appear in many complementary equations having solution A000201 (or equivalently, A001950). Typical complementary equations: AB=A+B (=A003623), BB=A+2B (=A101864), BBB=3A+5B (=A134864). - Clark Kimberling, Nov 14 2007
Cumulative sum of A001468 terms. - Eric Angelini, Aug 19 2008
The lower Wythoff sequence also can be constructed by playing the so-called Mancala-game: n piles of total d(n) chips are standing in a row. The piles are numbered from left to right by 1, 2, 3, ... . The number of chips in a pile at the beginning of the game is equal to the number of the pile. One step of the game is described as follows: Distribute the pile on the very left one by one to the piles right of it. If chips are remaining, build piles out of one chip subsequently to the right. After f(n) steps the game ends in a constant row of piles. The lower Wythoff sequence is also given by n -> f(n). - Roland Schroeder (florola(AT)gmx.de), Jun 19 2010
With the exception of the first term, a(n) gives the number of iterations required to reverse the list {1,2,3,...,n} when using the mapping defined as follows: remove the first term of the list, z(1), and add 1 to each of the next z(1) terms (appending 1's if necessary) to get a new list. See A183110 where this mapping is used and other references given. This appears to be essentially the Mancala-type game interpretation given by R. Schroeder above. - John W. Layman, Feb 03 2011
Also row numbers of A213676 starting with an even number of zeros. - Reinhard Zumkeller, Mar 10 2013
From Jianing Song, Aug 18 2022: (Start)
Numbers k such that {k*phi} > phi^(-2), where {} denotes the fractional part.
Proof: Write m = floor(k*phi).
If {k*phi} > phi^(-2), take s = m-k+1. From m < k*phi < m+1 we have k < (m-k+1)*phi < k + phi, so floor(s*phi) = k or k+1. If floor(s*phi) = k+1, then (see A003622) floor((k+1)*phi) = floor(floor(s*phi)*phi) = floor(s*phi^2)-1 = s+floor(s*phi)-1 = m+1, but actually we have (k+1)*phi > m+phi+phi^(-2) = m+2, a contradiction. Hence floor(s*phi) = k.
If floor(s*phi) = k, suppose otherwise that k*phi - m <= phi^(-2), then m < (k+1)*phi <= m+2, so floor((k+1)*phi) = m+1. Suppose that A035513(p,q) = k for p,q >= 1, then A035513(p,q+1) = floor((k+1)*phi) - 1 = m = A035513(s,1). But it is impossible for one number (m) to occur twice in A035513. (End)
The formula from Jianing Song above is a direct consequence of an old result by Carlitz et al. (1972). Their Theorem 11 states that (a(n)) consists of the numbers k such that {k*phi^(-2)} < phi^(-1). One has {k*phi^(-2)} = {k*(2-phi)} = {-k*phi}. Using that 1-phi^(-1) = phi^(-2), the Jianing Song formula follows. - Michel Dekking, Oct 14 2023
In the Fokkink-Joshi paper, this sequence is the Cloitre (1,1,2,1)-hiccup sequence, i.e., a(1) = 1; for m < n, a(n) = a(n-1)+2 if a(m) = n-1, else a(n) = a(n-1)+1. - Michael De Vlieger, Jul 28 2025

Examples

			From Roland Schroeder (florola(AT)gmx.de), Jul 13 2010: (Start)
Example for n = 5; a(5) = 8;
(Start: [1,2,3,4,5]; 8 steps until [5,4,3,2,1]):
[1,2,3,4,5]; [3,3,4,5]; [4,5,6]; [6,7,1,1]; [8,2,2,1,1,1]: [3,3,2,2,2,1,1,1]; [4,3,3,2,1,1,1]; [4,4,3,2,1,1]; [5,4,3,2,1]. (End)
		

References

  • Eric Friedman, Scott M. Garrabrant, Ilona K. Phipps-Morgan, A. S. Landsberg and Urban Larsson, Geometric analysis of a generalized Wythoff game, in Games of no Chance 5, MSRI publ. Cambridge University Press, date?
  • M. Gardner, Penrose Tiles to Trapdoor Ciphers, W. H. Freeman, 1989; see p. 107.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. M. Yaglom, Two games with matchsticks, pp. 1-7 of Qvant Selecta: Combinatorics I, Amer Math. Soc., 2001.

Crossrefs

a(n) = least k such that s(k) = n, where s = A026242. Complement of A001950. See also A058066.
The permutation A002251 maps between this sequence and A001950, in that A002251(a(n)) = A001950(n), A002251(A001950(n)) = a(n).
First differences give A014675. a(n) = A022342(n) + 1 = A005206(n) + n + 1. a(2n)-a(n)=A007067(n). a(a(a(n)))-a(n) = A026274(n-1). - Benoit Cloitre, Mar 08 2003
A185615 gives values n such that n divides A000201(n)^m for some integer m>0.
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021
Bisections: A276854, A342279.

Programs

  • Haskell
    a000201 n = a000201_list !! (n-1)
    a000201_list = f [1..] [1..] where
       f (x:xs) (y:ys) = y : f xs (delete (x + y) ys)
    -- Reinhard Zumkeller, Jul 02 2015, Mar 10 2013
    
  • Maple
    Digits := 100; t := evalf((1+sqrt(5))/2); A000201 := n->floor(t*n);
  • Mathematica
    Table[Floor[N[n*(1+Sqrt[5])/2]], {n, 1, 75}]
    Array[ Floor[ #*GoldenRatio] &, 68] (* Robert G. Wilson v, Apr 17 2010 *)
  • Maxima
    makelist(floor(n*(1+sqrt(5))/2),n,1,60); /* Martin Ettl, Oct 17 2012 */
    
  • PARI
    a(n)=floor(n*(sqrt(5)+1)/2)
    
  • PARI
    a(n)=(n+sqrtint(5*n^2))\2 \\ Charles R Greathouse IV, Feb 07 2013
    
  • Python
    def aupton(terms):
      alst, aset = [None, 1], {1}
      for n in range(1, terms):
        an = alst[n] + (1 if n not in aset else 2)
        alst.append(an); aset.add(an)
      return alst[1:]
    print(aupton(68)) # Michael S. Branicky, May 14 2021
    
  • Python
    from math import isqrt
    def A000201(n): return (n+isqrt(5*n**2))//2 # Chai Wah Wu, Jan 11 2022

Formula

Zeckendorf expansion of n (cf. A035517) ends with an even number of 0's.
Other properties: a(1)=1; for n>1, a(n) is taken to be the smallest integer greater than a(n-1) which is consistent with the condition "n is in the sequence if and only if a(n)+1 is not in the sequence".
a(1) = 1; for n>0, a(n+1) = a(n)+1 if n is not in the sequence, a(n+1) = a(n)+2 if n is in the sequence.
a(a(n)) = floor(n*phi^2) - 1 = A003622(n).
{a(k)} union {a(k)+1} = {1, 2, 3, 4, ...}. Hence a(1) = 1; for n>1, a(a(n)) = a(a(n)-1)+2, a(a(n)+1) = a(a(n))+1. - Benoit Cloitre, Mar 08 2003
{a(n)} is a solution to the recurrence a(a(n)+n) = 2*a(n)+n, a(1)=1 (see Barbeau et al.).
a(n) = A001950(n) - n. - Philippe Deléham, May 02 2004
a(0) = 0; a(n) = n + Max_{k : a(k) < n}. - Vladeta Jovovic, Jun 11 2004
a(Fibonacci(r-1)+j) = Fibonacci(r)+a(j) for 0 < j <= Fibonacci(r-2); 2 < r. - Paul Weisenhorn, Aug 18 2012
With 1 < k and A001950(k-1) < n <= A001950(k): a(n) = 2*n-k; A001950(n) = 3*n-k. - Paul Weisenhorn, Aug 21 2012

A005185 Hofstadter Q-sequence: a(1) = a(2) = 1; a(n) = a(n-a(n-1)) + a(n-a(n-2)) for n > 2.

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 6, 8, 8, 8, 10, 9, 10, 11, 11, 12, 12, 12, 12, 16, 14, 14, 16, 16, 16, 16, 20, 17, 17, 20, 21, 19, 20, 22, 21, 22, 23, 23, 24, 24, 24, 24, 24, 32, 24, 25, 30, 28, 26, 30, 30, 28, 32, 30, 32, 32, 32, 32, 40, 33, 31, 38, 35, 33, 39, 40, 37, 38, 40, 39
Offset: 1

Views

Author

Simon Plouffe and N. J. A. Sloane, May 20 1991

Keywords

Comments

Rate of growth is not known. In fact it is not even known if this sequence is defined for all positive n.
Roman Pearce, Aug 29 2014, has computed that a(n) exists for n <= 10^10. - N. J. A. Sloane
a(n) exists for n <= 3*10^10. - M. Eric Carr, Jul 02 2023

Examples

			a(18) = 11 because a(17) is 10 and a(16) is 9, so we take a(18 - 10) + a(18 - 9) = a(8) + a(9) = 5 + 6 = 11.
		

References

  • B. W. Conolly, "Meta-Fibonacci sequences," in S. Vajda, editor, Fibonacci and Lucas Numbers and the Golden Section. Halstead Press, NY, 1989, pp. 127-138.
  • R. K. Guy, Unsolved Problems in Number Theory, Sect. E31.
  • D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 138.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. Vajda, Fibonacci and Lucas Numbers and the Golden Section, Wiley, 1989, see p. 129.
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 129.

Crossrefs

Cf. A081827 (first differences).
Cf. A226244, A226245 (record values and where they occur).
See A244477 for a different start.

Programs

  • C
    #include 
    #define LIM 20
    int Qa[LIM];
    int Q(int n){if (n==1 || n==2){return 1;} else{return Qa[n-Qa[n-1]]+Qa[n-Qa[n-2]];}}
    int main(){int i;printf("n\tQ\n");for(i=1; iGonzalo Ciruelos, Aug 01 2013
    
  • Haskell
    a005185 n = a005185_list !! (n-1)
    a005185_list = 1 : 1 : zipWith (+)
       (map a005185 $ zipWith (-) [3..] a005185_list)
       (map a005185 $ zipWith (-) [3..] $ tail a005185_list)
    -- Reinhard Zumkeller, Jun 02 2013, Sep 15 2011
    
  • Magma
    I:=[1,1]; [n le 2 select I[n] else Self(n-Self(n-1))+Self(n-Self(n-2)): n in [1..90]]; // Vincenzo Librandi, Aug 08 2014
    
  • Maple
    A005185 := proc(n) option remember;
        if n<=2 then 1
        elif n > procname(n-1) and n > procname(n-2) then
            RETURN(procname(n-procname(n-1))+procname(n-procname(n-2)));
        else
            ERROR(" died at n= ", n);
        fi; end proc;
    # More generally, the following defines the Hofstadter-Huber sequence Q(r,s) - N. J. A. Sloane, Apr 15 2014
    r:=1; s:=2;
    a:=proc(n) option remember; global r,s;
    if n <= s then  1
    else
        if (a(n-r) <= n) and (a(n-s) <= n) then
        a(n-a(n-r))+a(n-a(n-s));
        else lprint("died with n =",n); return (-1);
        fi; fi; end;
    [seq(a(n), n=1..100)];
  • Mathematica
    a[1]=a[2]=1; a[n_]:= a[n]= a[n -a[n-1]] + a[n -a[n-2]]; Table[ a[n], {n,70}]
  • MuPAD
    q:=proc(n) option remember; begin if n<=2 then 1 else q(n-q(n-1))+q(n-q(n-2)) end_if; end_proc: q(i)$i=1..100; // Zerinvary Lajos, Apr 03 2007
    
  • PARI
    {a(n)= local(A); if(n<1, 0, A=vector(n,k,1); for(k=3, n, A[k]= A[k-A[k-1]]+ A[k-A[k-2]]); A[n])} /* Michael Somos, Jul 16 2007 */
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def a(n):
        if n < 3: return 1
        return a(n - a(n-1)) + a(n - a(n-2))
    print([a(n) for n in range(1, 75)]) # Michael S. Branicky, Jul 26 2021
  • Sage
    @CachedFunction
    def a(n):
        if (n<3): return 1
        else: return a(n -a(n-1)) + a(n -a(n-2))
    [a(n) for n in (1..70)] # G. C. Greubel, Feb 13 2020
    
  • Scheme
    (define q (lambda (n) (cond ( (eqv? n 0) 1) ( (eqv? n 1) 1) ( #t (+ (q (- n (q (- n 1)))) (q (- n (q (- n 2)))))))))
    
  • Scheme
    ;; An implementation of memoization-macro definec can be found for example in: http://oeis.org/wiki/Memoization
    (definec (A005185 n) (if (<= n 2) 1 (+ (A005185 (- n (A005185 (- n 1)))) (A005185 (- n (A005185 (- n 2)))))))
    ;; Antti Karttunen, Mar 22 2017
    

A003622 The Wythoff compound sequence AA: a(n) = floor(n*phi^2) - 1, where phi = (1+sqrt(5))/2.

Original entry on oeis.org

1, 4, 6, 9, 12, 14, 17, 19, 22, 25, 27, 30, 33, 35, 38, 40, 43, 46, 48, 51, 53, 56, 59, 61, 64, 67, 69, 72, 74, 77, 80, 82, 85, 88, 90, 93, 95, 98, 101, 103, 106, 108, 111, 114, 116, 119, 122, 124, 127, 129, 132, 135, 137, 140, 142, 145, 148, 150, 153, 156, 158, 161, 163, 166
Offset: 1

Views

Author

Keywords

Comments

Also, integers with "odd" Zeckendorf expansions (end with ...+F_2 = ...+1) (Fibonacci-odd numbers); first column of Wythoff array A035513; from a 3-way splitting of positive integers. [Edited by Peter Munn, Sep 16 2022]
Also, numbers k such that A005206(k) = A005206(k+1). Also k such that A022342(A005206(k)) = k+1 (for all other k's this is k). - Michele Dondi (bik.mido(AT)tiscalenet.it), Dec 30 2001
Also, positions of 1's in A139764, the smallest term in Zeckendorf representation of n. - John W. Layman, Aug 25 2011
From Amiram Eldar, Sep 03 2022: (Start)
Numbers with an odd number of trailing 1's in their dual Zeckendorf representation (A104326), i.e., numbers k such that A356749(k) is odd.
The asymptotic density of this sequence is 1 - 1/phi (A132338). (End)
{a(n)} is the unique monotonic sequence of positive integers such that {a(n)} and {b(n)}: b(n) = a(n) - n form a partition of the nonnegative integers. - Yifan Xie, Jan 25 2025

References

  • A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 62.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 307-308 of 2nd edition.
  • C. Kimberling, "Stolarsky interspersions", Ars Combinatoria 39 (1995) 129-138.
  • D. R. Morrison, "A Stolarsky array of Wythoff pairs", in A Collection of Manuscripts Related to the Fibonacci Sequence. Fibonacci Assoc., Santa Clara, CA, 1980, pp. 134-136.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 10.
  • N. J. A. Sloane and Simon Plouffe, Encyclopedia of Integer Sequences, Academic Press, 1995: this sequence appears twice, as both M3277 and M3278.

Crossrefs

Positions of 1's in A003849.
Complement of A022342.
The Wythoff compound sequences: Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Haskell
    a003622 n = a003622_list !! (n-1)
    a003622_list = filter ((elem 1) . a035516_row) [1..]
    -- Reinhard Zumkeller, Mar 10 2013
    
  • Maple
    A003622 := proc(n)
        n+floor(n*(1+sqrt(5))/2)-1 ;
    end proc: # R. J. Mathar, Jan 25 2015
    # Maple code for the Wythoff compound sequences, from N. J. A. Sloane, Mar 30 2016
    # The Wythoff compound sequences: Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
    # Assume files out1, out2 contain lists of the terms in the base sequences A and B from their b-files
    read out1; read out2; b[0]:=b1: b[1]:=b2:
    w2:=(i,j,n)->b[i][b[j][n]];
    w3:=(i,j,k,n)->b[i][b[j][b[k][n]]];
    for i from 0 to 1 do
    lprint("name=",i);
    lprint([seq(b[i][n],n=1..100)]):
    od:
    for i from 0 to 1 do for j from 0 to 1 do
    lprint("name=",i,j);
    lprint([seq(w2(i,j,n),n=1..100)]);
    od: od:
    for i from 0 to 1 do for j from 0 to 1 do for k from 0 to 1 do
    lprint("name=",i,j,k);
    lprint([seq(w3(i,j,k,n),n=1..100)]);
    od: od: od:
  • Mathematica
    With[{c=GoldenRatio^2},Table[Floor[n c]-1,{n,70}]] (* Harvey P. Dale, Jun 11 2011 *)
    Range[70]//Floor[#*GoldenRatio^2]-1& (* Waldemar Puszkarz, Oct 10 2017 *)
  • PARI
    a(n)=floor(n*(sqrt(5)+3)/2)-1
    
  • PARI
    a(n) = (sqrtint(n^2*5)+n*3)\2 - 1; \\ Michel Marcus, Sep 17 2022
    
  • Python
    from sympy import floor
    from mpmath import phi
    def a(n): return floor(n*phi**2) - 1 # Indranil Ghosh, Jun 09 2017
    
  • Python
    from math import isqrt
    def A003622(n): return (n+isqrt(5*n**2)>>1)+n-1 # Chai Wah Wu, Aug 11 2022

Formula

a(n) = floor(n*phi) + n - 1. [Corrected by Jianing Song, Aug 18 2022]
a(n) = floor(floor(n*phi)*phi) = A000201(A000201(n)). [See the Mathematics Stack Exchange link for a proof of the equivalence of the definition. - Jianing Song, Aug 18 2022]
a(n) = 1 + A022342(1 + A022342(n)).
G.f.: 1 - (1-x)*Sum_{n>=1} x^a(n) = 1/1 + x/1 + x^2/1 + x^3/1 + x^5/1 + x^8/1 + ... + x^F(n)/1 + ... (continued fraction where F(n)=n-th Fibonacci number). - Paul D. Hanna, Aug 16 2002
a(n) = A001950(n) - 1. - Philippe Deléham, Apr 30 2004
a(n) = A022342(n) + n. - Philippe Deléham, May 03 2004
a(n) = a(n-1) + 2 + A005614(n-2); also a(n) = a(n-1) + 1 + A001468(n-1). - A.H.M. Smeets, Apr 26 2024

A005614 The binary complement of the infinite Fibonacci word A003849. Start with 1, apply 0->1, 1->10, iterate, take limit.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0
Offset: 0

Views

Author

Keywords

Comments

Previous name was: The infinite Fibonacci word (start with 1, apply 0->1, 1->10, iterate, take limit).
Characteristic function of A022342. - Philippe Deléham, May 03 2004
a(n) = number of 0's between successive 1's (see also A003589 and A007538). - Eric Angelini, Jul 06 2005
With offset 1 this is the characteristic sequence for Wythoff A-numbers A000201=[1,3,4,6,...].
Eric Angelini's comment made me think that if 1 is defined to be the number of 0's between successive 1's in a string of 0's and 1's, then this string is 101. Applying the same operation to the digits of 101 leads to 101101, the iteration leads to successive palindromes of lengths given by A001911, up to a(n). - Rémi Schulz, Jul 06 2010
For generalized Fibonacci words see A221150, A221151, A221152, ... - Peter Bala, Nov 11 2013
The limiting mean of the first n terms is phi - 1; the limiting variance is phi (A001622). - Clark Kimberling, Mar 12 2014
Apply the difference operator to every column of the Wythoff difference array, A080164, to get an array of Fibonacci numbers, F(h). Replace each F(h) with h, and apply the difference operator to every column. In the resulting array, every column is A005614. - Clark Kimberling, Mar 02 2015
Binary expansion of the rabbit constant A014565. - M. F. Hasler, Nov 10 2018

Examples

			The infinite word is 101101011011010110101101101011...
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003.
  • G. Melançon, Factorizing infinite words using Maple, MapleTech journal, vol. 4, no. 1, 1997, pp. 34-42, esp. p. 36.

Crossrefs

Binary complement of A003849, which is the standard form of this sequence.
Two other essentially identical sequences are A096270, A114986.
Subwords: A178992, A171676.
Cf. A000045 (Fibonacci numbers), A001468, A001911, A005206 (partial sums), A014565, A014675, A022342, A036299, A044432, A221150, A221151, A221152.
Cf. A339051 (odd bisection), A339052 (even bisection).
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Haskell
    a005614 n = a005614_list !! n
    a005614_list = map (1 -) a003849_list
    -- Reinhard Zumkeller, Apr 07 2012
    
  • Magma
    [Floor((n+1)*(-1+Sqrt(5))/2)-Floor(n*(-1+Sqrt(5))/2): n in [1..100]]; // Vincenzo Librandi, Jan 17 2019
    
  • Maple
    Digits := 50; u := evalf((1-sqrt(5))/2); A005614 := n->floor((n+1)*u)-floor(n*u);
  • Mathematica
    Nest[ Flatten[ # /. {0 -> {1}, 1 -> {1, 0}}] &, {1}, 10] (* Robert G. Wilson v, Jan 30 2005 *)
    Flatten[Nest[{#, #[[1]]} &, {1, 0}, 9]] (* IWABUCHI Yu(u)ki, Oct 23 2013 *)
    SubstitutionSystem[{0 -> {1}, 1 -> {1, 0}}, {1, 0}, 9] // Last (* Jean-François Alcover, Feb 06 2020 *)
  • PARI
    a(n,w1,s0,s1)=local(w2); for(i=2,n,w2=[ ]; for(k=1,length(w1),w2=concat(w2, if(w1[ k ],s1,s0))); w1=w2); w2
    for(n=2,10,print(n" "a(n,[ 0 ],[ 1 ],[ 1,0 ]))) \\ Gives successive convergents to sequence
    
  • PARI
    /* for m>=1 compute exactly A183136(m+1)+1 terms of the sequence */
    r=(1+sqrt(5))/2;v=[1,0];for(n=2,m,v=concat(v,vector(floor((n+1)/r),i,v[i]));a(n)=v[n];) /* Benoit Cloitre, Jan 16 2013 */
    
  • Python
    from math import isqrt
    def A005614(n): return (n+isqrt(m:=5*(n+2)**2)>>1)-(n+1+isqrt(m-10*n-15)>>1) # Chai Wah Wu, Aug 17 2022

Formula

Define strings S(0)=1, S(1)=10, thereafter S(n)=S(n-1)S(n-2); iterate. Sequence is S(oo). The individual S(n)'s are given in A036299.
a(n) = floor((n+2)*u) - floor((n+1)*u), where u = (-1 + sqrt(5))/2.
Sum_{n>=0} a(n)/2^(n+1) = A014565. - R. J. Mathar, Jul 19 2013
From Peter Bala, Nov 11 2013: (Start)
If we read the present sequence as the digits of a decimal constant c = 0.101101011011010 ... then we have the series representation c = Sum_{n >= 1} 1/10^floor(n*phi). An alternative representation is c = Sum_{n >= 1} 1/10^floor(n/phi) - 10/9.
The constant 9*c has the simple continued fraction representation [0; 1, 10, 10, 100, 1000, ..., 10^Fibonacci(n), ...]. See A010100.
Using this result we can find the alternating series representation c = 1/9 - 9*Sum_{n >= 1} (-1)^(n+1)*(1 + 10^Fibonacci(3*n+1))/( (10^(Fibonacci(3*n - 1)) - 1)*(10^(Fibonacci(3*n + 2)) - 1) ). The series converges very rapidly: for example, the first 10 terms of the series give a value for c accurate to more than 5.7 million decimal places. Cf. A014565. (End)
a(n) = A005206(n+1) - A005206(n). a(2*n) = A339052(n); a(2*n+1) = A339051(n+1). - Peter Bala, Aug 09 2022

Extensions

Corrected by Clark Kimberling, Oct 04 2000
Name corrected by Michel Dekking, Apr 02 2019
Showing 1-10 of 84 results. Next