cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A025428 Number of partitions of n into 4 nonzero squares.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 3, 0, 1, 2, 0, 1, 2, 1, 2, 2, 1, 2, 1, 0, 3, 2, 1, 2, 1, 2, 1, 2, 2, 1, 4, 1, 2, 3, 0, 2, 4, 1, 3, 2, 1, 4, 1, 1, 3, 3, 2, 2, 4, 2, 1, 3, 2, 3, 4, 2, 3, 3, 1, 2, 5, 2, 4, 3, 2, 4, 1, 1, 6, 4, 3, 4, 2, 3, 0, 4, 4, 3, 5, 1, 5, 5, 1, 4, 5, 2
Offset: 0

Views

Author

Keywords

Comments

Records occur at n= 4, 28, 52, 82, 90, 130, 162, 198, 202, 210,.... - R. J. Mathar, Sep 15 2015

Crossrefs

Cf. A000414, A000534, A025357-A025375, A216374, A025416 (greedy inverse).
Column k=4 of A243148.

Programs

  • Maple
    A025428 := proc(n)
        local a,i,j,k,lsq ;
        a := 0 ;
        for i from 1 do
            if 4*i^2 > n then
                return a;
            end if;
            for j from i do
                if i^2+3*j^2 > n then
                    break;
                end if;
                for k from j do
                    if i^2+j^2+2*k^2 > n then
                        break;
                    end if;
                    lsq := n-i^2-j^2-k^2 ;
                    if lsq >= k^2 and issqr(lsq) then
                        a := a+1 ;
                    end if;
                end do:
            end do:
        end do:
    end proc:
    seq(A025428(n),n=1..40) ; # R. J. Mathar, Jun 15 2018
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
         `if`(i<1 or t<1, 0, b(n, i-1, t)+`if`(i^2>n, 0, b(n-i^2, i, t-1))))
        end:
    a:= n-> b(n, isqrt(n), 4):
    seq(a(n), n=0..100);  # Alois P. Heinz, Apr 14 2019
  • Mathematica
    nn = 100; lim = Sqrt[nn]; t = Table[0, {nn}]; Do[n = a^2 + b^2 + c^2 + d^2; If[n <= nn, t[[n]]++], {a, lim}, {b, a, lim}, {c, b, lim}, {d, c, lim}]; t (* T. D. Noe, Sep 28 2012 *)
    f[n_] := Length@ IntegerPartitions[n, {4}, Range[ Floor[ Sqrt[n - 1]]]^2]; Array[f, 105] (* Robert G. Wilson v, Sep 28 2012 *)
  • PARI
    A025428(n)=sum(a=1,n,sum(b=1,a,sum(c=1,b,sum(d=1,c,a^2+b^2+c^2+d^2==n))))
    
  • PARI
    A025428(n)=sum(a=1,sqrtint(max(n-3,0)), sum(b=1,min(sqrtint(n-a^2-2),a), sum(c=1,min(sqrtint(n-a^2-b^2-1),b),issquare(n-a^2-b^2-c^2,&d) & d <= c )))
    
  • PARI
    A025428(n)=sum(a=sqrtint(max(n,4)\4),sqrtint(max(n-3,0)), sum(b=sqrtint((n-a^2)\3-1)+1,min(sqrtint(n-a^2-2),a), sum(c=sqrtint((t=n-a^2-b^2)\2-1)+1, min(sqrtint(t-1),b), issquare(t-c^2) ))) \\ - M. F. Hasler, Sep 17 2012
    for(n=1,100,print1(A025428(n),","))
    
  • PARI
    T(n)={a=matrix(n,4,i,j,0);for(d=1,sqrtint(n),forstep(i=n,d*d+1,-1,for(j=2,4,a[i,j]+=sum(k=1,j,if(k0,a[i-k*d*d,j-k],if(k==j&&i-k*d*d==0,1)))));a[d*d,1]=1);for(i=1,n,print(i" "a[i,4]))} /* Robert Gerbicz, Sep 28 2012 */

Formula

For n>0, a(n) = ( A063730(n) + 6*A213024(n) + 3*A063725(n/2) + 8*A092573(n) + 6*A010052(n/4) ) / 24. - Max Alekseyev, Sep 30 2012
a(n) = ( A000118(n) - 4*A005875(n) - 6*A004018(n) - 12*A000122(n) - 15*A000007(n) + 12*A014455(n) - 24*A033715(n) - 12*A000122(n/2) + 12*A004018(n/2) + 32*A033716(n) - 32*A000122(n/3) + 48*A000122(n/4) ) / 384. - Max Alekseyev, Sep 30 2012
a(n) = [x^n y^4] Product_{k>=1} 1/(1 - y*x^(k^2)). - Ilya Gutkovskiy, Apr 19 2019
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} A010052(i) * A010052(j) * A010052(k) * A010052(n-i-j-k). - Wesley Ivan Hurt, Apr 19 2019

Extensions

Values of a(0..10^4) double-checked by M. F. Hasler, Sep 17 2012

A294675 Numbers that are the sum of 5 nonzero squares in exactly 1 way.

Original entry on oeis.org

5, 8, 11, 13, 14, 16, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 34, 36, 39, 42, 57, 60
Offset: 1

Views

Author

Robert Price, Nov 06 2017

Keywords

Comments

The sequence is likely to be finite and complete as the next term, if it exists, is > 50000.
From a proof by David A. Corneth on Nov 08 2017 in A294736: This sequence is complete, see the von Eitzen Link and Price's computation that the next term must be > 50000. Proof. The link mentions "for positive integer n, if n > 5408 then the number of ways to write n as a sum of 5 squares is at least Floor(Sqrt(n - 101) / 8)". So for n > 5408, there are more than one way to write n as a sum of 5 squares. For n <= 5408, it has been verified if n is in the sequence by inspection. Hence the sequence is complete.

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, New York, 1985, p. 86, Theorem 1.

Crossrefs

Programs

  • Mathematica
    Select[Range[100], Length[Select[PowersRepresentations[#, 5, 2], #[[1]] > 0&]] == 1&] (* Jean-François Alcover, Feb 25 2019 *)
    b[n_, i_, k_, t_] := b[n, i, k, t] = If[n == 0, If[t == 0, 1, 0], If[i<1 || t<1, 0, b[n, i - 1, k, t] + If[i^2 > n, 0, b[n - i^2, i, k, t - 1]]]];
    T[n_, k_] := b[n, Sqrt[n] // Floor, k, k];
    Position[Table[T[n, 5], {n, 0, 100}], 1] - 1 // Flatten (* Jean-François Alcover, Nov 06 2020, after Alois P. Heinz in A243148 *)

Formula

A243148(a(n),5) = 1. - Alois P. Heinz, Feb 25 2019

A243148 Triangle read by rows: T(n,k) = number of partitions of n into k nonzero squares; n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, May 30 2014

Keywords

Examples

			T(20,5) = 2 = #{ (16,1,1,1,1), (4,4,4,4,4) } since 20 = 4^2 + 4 * 1^2 = 5 * 2^2.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 0, 1;
  0, 0, 0, 1;
  0, 1, 0, 0, 1;
  0, 0, 1, 0, 0, 1;
  0, 0, 0, 1, 0, 0, 1;
  0, 0, 0, 0, 1, 0, 0, 1;
  0, 0, 1, 0, 0, 1, 0, 0, 1;
  0, 1, 0, 1, 0, 0, 1, 0, 0, 1;
  0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1;
  0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1;
  0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1;
  (...)
		

Crossrefs

Columns k = 0..10 give: A000007, A010052 (for n>0), A025426, A025427, A025428, A025429, A025430, A025431, A025432, A025433, A025434.
Row sums give A001156.
T(2n,n) gives A111178.
T(n^2,n) gives A319435.
T(n,k) = 1 for n in A025284, A025321, A025357, A294675, A295670, A295797 (for k = 2..7, respectively).

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
          `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(i^2>n, 0, b(n-i^2, i, t-1))))
        end:
    T:= (n, k)-> b(n, isqrt(n), k):
    seq(seq(T(n, k), k=0..n), n=0..14);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+(s-> `if`(s>n, 0, expand(x*b(n-s, i))))(i^2)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, isqrt(n))):
    seq(T(n), n=0..14);  # Alois P. Heinz, Oct 30 2021
  • Mathematica
    b[n_, i_, k_, t_] := b[n, i, k, t] = If[n == 0, If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i-1, k, t] + If[i^2 > n, 0, b[n-i^2, i, k, t-1]]]]; T[n_, k_] := b[n, Sqrt[n] // Floor, k, k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jun 06 2014, after Alois P. Heinz *)
    T[n_, k_] := Count[PowersRepresentations[n, k, 2], r_ /; FreeQ[r, 0]]; T[0, 0] = 1; Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 19 2016 *)
  • PARI
    T(n,k,L=n)=if(n>k*L^2, 0, k>n-3, k==n, k<2, issquare(n,&n) && n<=L*k, k>n-6, n-k==3, L=min(L,sqrtint(n-k+1)); sum(r=0,min(n\L^2,k-1),T(n-r*L^2,k-r,L-1), n==k*L^2)) \\ M. F. Hasler, Aug 03 2020

Formula

T(n,k) = [x^n y^k] 1/Product_{j>=1} (1-y*x^A000290(j)).
Sum_{k=1..n} k * T(n,k) = A281541(n).
Sum_{k=1..n} n * T(n,k) = A276559(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A292520(n).

A294736 Numbers that are the sum of 5 nonzero squares in exactly 2 ways.

Original entry on oeis.org

20, 38, 41, 45, 47, 48, 49, 50, 54, 55, 63, 66, 81, 105
Offset: 1

Views

Author

Robert Price, Nov 07 2017

Keywords

Comments

Inspected values of n <= 50000.
This sequence is complete, see the von Eitzen Link and Price's computation that the next term must be > 50000. Proof. The link mentions "for positive integer n, if n > 5408 then the number of ways to write n as a sum of 5 squares is at least Floor(Sqrt(n - 101) / 8)". So for n > 5408, there are more than two ways to write n as a sum of 5 squares. For n <= 5408, it has been verified if n is in the sequence by inspection. Hence the sequence is complete." - David A. Corneth, Nov 08 2017

Examples

			There are exactly two ways 20 is a sum of 5 nonzero squares. These are 1^2 + 1^2 + 1^2 + 1^2 + 4^2 = 2^2 + 2^2 + 2^2 + 2^2 + 2^2 = 20. Therefore 20 is in the sequence.
		

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, New York, 1985, p. 86, Theorem 1.

Crossrefs

Programs

  • Mathematica
    Select[Range[200], Length[Select[PowersRepresentations[#, 5, 2], #[[1]] > 0&]] == 2&] (* Jean-François Alcover, Nov 06 2020 *)

Formula

A243148(a(n),5) = 2. - Alois P. Heinz, Feb 26 2019

A025403 Numbers that are the sum of 4 positive cubes in exactly 1 way.

Original entry on oeis.org

4, 11, 18, 25, 30, 32, 37, 44, 51, 56, 63, 67, 70, 74, 81, 82, 88, 89, 93, 100, 107, 108, 119, 126, 128, 130, 135, 137, 142, 144, 145, 149, 154, 156, 161, 163, 168, 180, 182, 187, 191, 193, 198, 200, 205, 206, 217, 224, 226, 233, 240, 243, 245, 254, 256, 261, 266, 271, 280
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 1, n <= 300, n++, pr = Select[ PowersRepresentations[n, 4, 3], Times @@ # != 0 &]; If[pr != {} && Length[pr] == 1, Print[n, pr]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jul 31 2013 *)

Formula

{n: A025457(n) = 1}. - R. J. Mathar, Jun 15 2018

A294737 Numbers that are the sum of 5 nonzero squares in exactly 3 ways.

Original entry on oeis.org

29, 32, 35, 37, 40, 43, 44, 46, 51, 52, 58, 65, 69, 73, 78, 87, 90
Offset: 1

Views

Author

Robert Price, Nov 07 2017

Keywords

Comments

This sequence is likely finite and complete as the next term, if it exists, is > 50000.
From a proof by David A. Corneth on Nov 08 2017 in A294736: This sequence is complete, see the von Eitzen Link and Price's computation that the next term must be > 50000. Proof. The link mentions "for positive integer n, if n > 5408 then the number of ways to write n as a sum of 5 squares is at least Floor(Sqrt(n - 101) / 8)". So for n > 5408, there are more than eight ways to write n as a sum of 5 squares. For n <= 5408, it has been verified if n is in the sequence by inspection. Hence the sequence is complete.

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, New York, 1985, p. 86, Theorem 1.

Crossrefs

A294738 Numbers that are the sum of 5 nonzero squares in exactly 4 ways.

Original entry on oeis.org

62, 70, 71, 72, 75, 76, 82, 84, 89, 97, 108, 129, 132
Offset: 1

Views

Author

Robert Price, Nov 07 2017

Keywords

Comments

This sequence is likely finite and complete as the next term, if it exists, is > 50000.
From a proof by David A. Corneth on Nov 08 2017 in A294736: This sequence is complete, see the von Eitzen Link and Price's computation that the next term must be > 50000. Proof. The link mentions "for positive integer n, if n > 5408 then the number of ways to write n as a sum of 5 squares is at least Floor(Sqrt(n - 101) / 8)". So for n > 5408, there are more than eight ways to write n as a sum of 5 squares. For n <= 5408, it has been verified if n is in the sequence by inspection. Hence the sequence is complete.

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, New York, 1985, p. 86, Theorem 1.

Crossrefs

A294739 Numbers that are the sum of 5 nonzero squares in exactly 5 ways.

Original entry on oeis.org

53, 56, 59, 61, 64, 67, 68, 74, 79, 93, 95, 96, 102, 111, 114, 153, 177
Offset: 1

Views

Author

Robert Price, Nov 07 2017

Keywords

Comments

Theorem: There are no further terms. Proof (from a proof by David A. Corneth on Nov 08 2017 in A294736): The von Eitzen link states that if n > 5408 then the number of ways to write n as a sum of 5 squares is at least floor(sqrt(n - 101) / 8) = 9. For n <= 5408, terms have been verified by inspection. Hence this sequence is finite and complete.

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, New York, 1985, p. 86, Theorem 1.

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{pr = PowersRepresentations[n, 5, 2]}, Length@ Select[pr, #[[1]] > 0 &] == 5]; Select[ Range@ 200, fQ] (* Robert G. Wilson v, Nov 17 2017 *)

A294740 Numbers that are the sum of 5 nonzero squares in exactly 6 ways.

Original entry on oeis.org

80, 86, 92, 98, 100, 103, 110, 113, 117, 121, 135, 145
Offset: 1

Views

Author

Robert Price, Nov 07 2017

Keywords

Comments

Theorem: There are no further terms. Proof (from a proof by David A. Corneth on Nov 08 2017 in A294736): The von Eitzen link states that if n > 5408 then the number of ways to write n as a sum of 5 squares is at least floor(sqrt(n - 101) / 8) = 9. For n <= 5408, terms have been verified by inspection. Hence this sequence is finite and complete.

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, New York, 1985, p. 86, Theorem 1.

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{pr = PowersRepresentations[n, 5, 2]}, Length@Select[pr, #[[1]] > 0 &] == 6]; Select[Range@200, fQ] (* Robert G. Wilson v, Nov 17 2017 *)

A294741 Numbers that are the sum of 5 nonzero squares in exactly 7 ways.

Original entry on oeis.org

77, 83, 85, 88, 94, 99, 120, 124, 130, 137, 138, 150, 156, 201
Offset: 1

Views

Author

Robert Price, Nov 07 2017

Keywords

Comments

Theorem: There are no further terms. Proof (from a proof by David A. Corneth on Nov 08 2017 in A294736): The von Eitzen link states that if n > 5408 then the number of ways to write n as a sum of 5 squares is at least floor(sqrt(n - 101) / 8) = 9. For n <= 5408, terms have been verified by inspection. Hence this sequence is finite and complete.

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, New York, 1985, p. 86, Theorem 1.

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{pr = PowersRepresentations[n, 5, 2]}, Length@Select[pr, #[[1]] > 0 &] == 7]; Select[Range@250, fQ] (* Robert G. Wilson v, Nov 17 2017 *)
Showing 1-10 of 13 results. Next