cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027611 Denominator of n * n-th harmonic number.

Original entry on oeis.org

1, 1, 2, 3, 12, 10, 20, 35, 280, 252, 2520, 2310, 27720, 25740, 24024, 45045, 720720, 680680, 4084080, 3879876, 739024, 235144, 5173168, 14872858, 356948592, 343219800, 2974571600, 2868336900, 80313433200, 77636318760
Offset: 1

Views

Author

Glen Burch (gburch(AT)erols.com)

Keywords

Comments

This is very similar to A128438, which is a different sequence. They differ at n=6 (and nowhere else?). - N. J. A. Sloane, Nov 21 2008
Denominator of 1/n + 2/(n-1) + 3/(n-2) + ... + (n-1)/2 + n.
Denominator of Sum_{k=1..n} frac(n/k) where frac(x/y) denotes the fractional part of x/y. - Benoit Cloitre, Oct 03 2002
Denominator of Sum_{d=2..n-1, n mod d > 0} n/d. Numerator = A079076. - Reinhard Zumkeller, Dec 21 2002
a(n) is odd iff n is a power of 2. - Benoit Cloitre, Oct 03 2002
Indices where a(n) differs from A128438 are terms of A074791. - Gary Detlefs, Sep 03 2011

Crossrefs

Programs

  • Haskell
    import Data.Ratio ((%), denominator)
    a027611 n = denominator $ sum $ map (n %) [1..n]
    -- Reinhard Zumkeller, Jul 03 2012
    
  • Magma
    [Denominator(n*HarmonicNumber(n)): n in [1..40]]; // Vincenzo Librandi, Feb 19 2014
    
  • Maple
    a := n -> denom(add((n-j)/j, j=1..n));
    seq(a(n), n = 1..30); # Peter Luschny, May 12 2023
  • Mathematica
    a[n_]:=Denominator[n*HarmonicNumber[n]]; Array[a,100] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2011 *)
  • PARI
    a(n) = denominator(n*sum(k=1, n, 1/k)); \\ Michel Marcus, Feb 15 2015
    
  • Python
    from sympy import harmonic
    def A027611(n): return (n*harmonic(n)).q # Chai Wah Wu, Sep 26 2021
    
  • SageMath
    [denominator(n*harmonic_number(n)) for n in (1..40)] # G. C. Greubel, Aug 24 2022

Formula

From Vladeta Jovovic, Sep 02 2002: (Start)
a(n) = denominators of coefficients in expansion of -log(1-x)/(1-x)^2.
a(n) = denominators of (n+1)*(harmonic(n+1) - 1).
a(n) = denominators of (n+1)*(Psi(n+2) + Euler-gamma - 1). (End)
a(n) = numerator(h(n)/h(n-1)) - denominator(h(n)/h(n-1)), n > 1, where h(n) is the n-th harmonic number. - Gary Detlefs, Sep 03 2011
a(n) = A213999(n, n-2) for n > 1. - Reinhard Zumkeller, Jul 03 2012
a(n) = denominators of coefficients of e.g.f. -1 + exp(x)*(1 + Sum_{j >= 0} (-x)^(j+1)/(j * j!)). - G. C. Greubel, Aug 24 2022

Extensions

Entry revised by N. J. A. Sloane following a suggestion of Eric W. Weisstein, Jul 02 2004