A027611 Denominator of n * n-th harmonic number.
1, 1, 2, 3, 12, 10, 20, 35, 280, 252, 2520, 2310, 27720, 25740, 24024, 45045, 720720, 680680, 4084080, 3879876, 739024, 235144, 5173168, 14872858, 356948592, 343219800, 2974571600, 2868336900, 80313433200, 77636318760
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Complete Set
Crossrefs
Programs
-
Haskell
import Data.Ratio ((%), denominator) a027611 n = denominator $ sum $ map (n %) [1..n] -- Reinhard Zumkeller, Jul 03 2012
-
Magma
[Denominator(n*HarmonicNumber(n)): n in [1..40]]; // Vincenzo Librandi, Feb 19 2014
-
Maple
a := n -> denom(add((n-j)/j, j=1..n)); seq(a(n), n = 1..30); # Peter Luschny, May 12 2023
-
Mathematica
a[n_]:=Denominator[n*HarmonicNumber[n]]; Array[a,100] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2011 *)
-
PARI
a(n) = denominator(n*sum(k=1, n, 1/k)); \\ Michel Marcus, Feb 15 2015
-
Python
from sympy import harmonic def A027611(n): return (n*harmonic(n)).q # Chai Wah Wu, Sep 26 2021
-
SageMath
[denominator(n*harmonic_number(n)) for n in (1..40)] # G. C. Greubel, Aug 24 2022
Formula
From Vladeta Jovovic, Sep 02 2002: (Start)
a(n) = denominators of coefficients in expansion of -log(1-x)/(1-x)^2.
a(n) = denominators of (n+1)*(harmonic(n+1) - 1).
a(n) = denominators of (n+1)*(Psi(n+2) + Euler-gamma - 1). (End)
a(n) = numerator(h(n)/h(n-1)) - denominator(h(n)/h(n-1)), n > 1, where h(n) is the n-th harmonic number. - Gary Detlefs, Sep 03 2011
a(n) = A213999(n, n-2) for n > 1. - Reinhard Zumkeller, Jul 03 2012
a(n) = denominators of coefficients of e.g.f. -1 + exp(x)*(1 + Sum_{j >= 0} (-x)^(j+1)/(j * j!)). - G. C. Greubel, Aug 24 2022
Extensions
Entry revised by N. J. A. Sloane following a suggestion of Eric W. Weisstein, Jul 02 2004
Comments