A081526 Erroneous version of A027611.
1, 2, 3, 12, 10, 20, 35, 280, 252, 2520, 2310
Offset: 1
Keywords
Crossrefs
Cf. A001705.
Formula
Extensions
Corrected and extended by Martin Fuller, Jan 03 2006
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Denominator[Table[2^n*Sum[1/k,{k,1,2^n}],{n,0,10}]] With[{nn=300},Select[Denominator[Times@@@Thread[{Range[nn],HarmonicNumber[Range[nn]]}]],OddQ]] (* Harvey P. Dale, Sep 12 2016 *)
H(n) = [ 1, 3/2, 11/6, 25/12, 137/60, 49/20, 363/140, 761/280, 7129/2520, ... ] = A001008/A002805.
List([1..30],n->DenominatorRat(Sum([1..n],i->1/i))); # Muniru A Asiru, Dec 20 2018
import Data.Ratio ((%), denominator) a002805 = denominator . sum . map (1 %) . enumFromTo 1 a002805_list = map denominator $ scanl1 (+) $ map (1 %) [1..] -- Reinhard Zumkeller, Jul 03 2012
[Denominator(HarmonicNumber(n)): n in [1..40]]; // Vincenzo Librandi, Apr 16 2015
seq(denom(sum((2*k-1)/k, k=1..n), n=1..30); # Gary Detlefs, Jul 18 2011 f:=n->denom(add(1/k, k=1..n)); # N. J. A. Sloane, Nov 15 2013
Denominator[ Drop[ FoldList[ #1 + 1/#2 &, 0, Range[ 30 ] ], 1 ] ] (* Harvey P. Dale, Feb 09 2000 *) Table[Denominator[HarmonicNumber[n]], {n, 1, 40}] (* Stefan Steinerberger, Apr 20 2006 *) Denominator[Accumulate[1/Range[25]]] (* Alonso del Arte, Nov 21 2018 *)
a(n)=denominator(sum(k=2,n,1/k)) \\ Charles R Greathouse IV, Feb 11 2011
from fractions import Fraction def a(n): return sum(Fraction(1, i) for i in range(1, n+1)).denominator print([a(n) for n in range(1, 30)]) # Michael S. Branicky, Dec 24 2021
def harmonic(a, b): # See the F. Johansson link. if b - a == 1 : return 1, a m = (a+b)//2 p, q = harmonic(a,m) r, s = harmonic(m,b) return p*s+q*r, q*s def A002805(n) : H = harmonic(1,n+1); return denominator(H[0]/H[1]) [A002805(n) for n in (1..29)] # Peter Luschny, Sep 01 2012
a:= n-> prevprime(2^n+1): seq(a(n), n=1..40); # Alois P. Heinz, Apr 23 2020
PrevPrim[n_] := Block[{k = n - 1}, While[ !PrimeQ[k], k-- ]; k]; Table[ Abs[ PrevPrim[2^n]], {n, 1, 30} ] Join[{2},NextPrime[2^Range[2,40],-1]] (* Harvey P. Dale, Jun 26 2011 *)
a(n) = precprime(2^n) \\ Michel Marcus, Aug 08 2013
import Data.Ratio ((%), numerator) a027612 n = numerator $ sum $ zipWith (%) [1 .. n] [n, n-1 .. 1] -- Reinhard Zumkeller, Jul 03 2012
[Numerator((&+[j/(n-j+1): j in [1..n]])): n in [1..30]]; // G. C. Greubel, Aug 23 2022
a := n -> numer(add((n+1-j)/j, j=1..n)); seq(a(n), n = 1..29); # Peter Luschny, May 12 2023
Numerator[Table[Sum[Sum[1/i,{i,1,k}],{k,1,n}],{n,1,30}]] (* Alexander Adamchuk, Apr 12 2006 *) Numerator[Table[Sum[k/(n-k+1),{k,1,n}],{n,1,50}]] (* Alexander Adamchuk, Jul 26 2006 *)
a(n) = numerator(sum(k=1, n, k/(n-k+1))); \\ Michel Marcus, Jul 14 2018
[numerator(n*(harmonic_number(n+1) - 1)) for n in (1..30)] # G. C. Greubel, Aug 23 2022
The 3rd harmonic number is 11/6. So a(3) = 11 - 6 = 5.
List([1..35], n-> NumeratorRat(Sum([0..n-2], k-> 2/(k+2))) ); # G. C. Greubel, Jul 27 2019
[Numerator(a)-Denominator(a) where a is HarmonicNumber(n): n in [1..35]]; // Marius A. Burtea, Aug 03 2019
s := n -> add(1/i, i=2..n): a := n -> numer(s(n)): seq(a(n), n=1..30); # Zerinvary Lajos, Mar 28 2007
A064169[n_]:= (s = Sum[1/k, {k, n}]; Numerator[s] - Denominator[s]); Table[A064169[n], {n, 35}] Numerator[Table[Sum[1/k, {k, 2, n}], {n, 35}]] (* Alexander Adamchuk, Jun 09 2006 *) Numerator[#] - Denominator[#] &/@ HarmonicNumber[Range[35]] (* Harvey P. Dale, Apr 25 2016 *) Numerator[Accumulate[1/Range[2, 35]]] (* Alonso del Arte, Nov 21 2018 *) a[n_] := Numerator[PolyGamma[1 + n] + EulerGamma - 1]; Table[a[n], {n, 1, 29}] (* Peter Luschny, Feb 19 2022 *)
a(n) = my(h=sum(i=1, n, 1/i)); numerator(h)-denominator(h) \\ Felix Fröhlich, Jan 14 2019
from sympy import harmonic def A064169(n): return (lambda x: x.p - x.q)(harmonic(n)) # Chai Wah Wu, Sep 27 2021
[numerator(harmonic_number(n)) - denominator(harmonic_number(n)) for n in (1..35)] # G. C. Greubel, Jul 27 2019
See A213998.
import Data.Ratio ((%), denominator, Ratio) a213999 n k = a213999_tabl !! n !! k a213999_row n = a213999_tabl !! n a213999_tabl = map (map denominator) $ iterate pf [1] where pf row = zipWith (+) ([0] ++ row) (row ++ [-1 % (x * (x + 1))]) where x = denominator $ last row
T[, 0] = 1; T[n, n_] := 1/(n + 1); T[n_, k_] := T[n, k] = T[n - 1, k] + T[n - 1, k - 1]; Table[T[n, k] // Denominator, {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 10 2021 *)
a(1) = 1 = numerator of 1/1. a(2) = 7 = numerator of 1/1 + 5/2 = 7/2. a(3) = 47 = numerator of 7/2 + 13/3 = 47/6. a(4) = 57 = numerator of 47/6 + 77/12 = 57/4. a(5) = 549 = numerator of 57/4 + 87/10 = 549/20. a(6) = 341 = numerator of 549/20 + 223/20 = 341/10 a(7) = 3349 = numerator of 341/10 + 481/35 = 3349/70. a(8) = 88327 = numerator of 3349/70 + 4609/280 = 88327/1260. a(9) = 3844 = numerator of 88327/1260 + 4861/252 = 3844/45. a(10) = 54251 = numerator of 3844/45 + 55991/2520 = 54251/504, or, untelescoping: a(10) = 54251 = numerator of 1/1 + 5/2 + 13/3 + 77/12 + 87/10 + 223/20 + 481/35 + 4609/252 + 4861/252 + 55991/2520 = 54251/504.
a124837 n = a213998 (n + 2) (n - 1) -- Reinhard Zumkeller, Jul 03 2012
Table[Numerator[(n+2)!/2!/n!*Sum[1/k,{k,3,n+2}]],{n,1,30}] (* Alexander Adamchuk, Nov 11 2006 *)
Comments