A309391 a(n) = gcd(n, A064169(n-2)) for n > 2.
3, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13, 1, 1, 1, 17, 1, 19, 1, 1, 1, 23, 1, 5, 1, 1, 1, 29, 1, 31, 1, 1, 1, 1, 1, 37, 1, 1, 1, 41, 1, 43, 1, 1, 1, 47, 1, 7, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 1, 1, 1, 1, 67, 1, 1, 1, 71, 1, 73, 1, 1, 1, 1, 1, 79, 1, 1, 1, 83, 1, 1, 1, 1, 11, 89, 1
Offset: 3
Keywords
Examples
a(25) = gcd(25, A064169(25-2)) = gcd(25, 325333835) = 5, a(25) = gcd(25, A001008(25-1)) = gcd(25, 1347822955) = 5. It should be noted that a(88) = 11, a(1290) = 43, a(9339) = 11, ...
Links
- Robert Israel, Table of n, a(n) for n = 3..10000
- Romeo Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862--2012), arXiv:1111.3057 [math.NT], 2001.
- Eric Weisstein's World of Mathematics, Wolstenholme's Theorem.
- Wikipedia, Wolstenholme's theorem.
Programs
-
Magma
[Gcd(k, Numerator(a)-Denominator(a)) where a is HarmonicNumber(k-2):k in [3..90]]; // Marius A. Burtea, Jul 29 2019
-
Maple
H:= 0: for n from 3 to 100 do H:= H + 1/(n-2); A[n]:= igcd(n, numer(H)-denom(H)); od: seq(A[i],i=3..100); # Robert Israel, Aug 04 2019
-
Mathematica
a[n_] := GCD[n, Numerator[(h = HarmonicNumber[n-2])] - Denominator[h]]; Array[a, 81, 3]
Formula
a(p) = p for every odd prime p.
a(p^2) = p iff p > 3 is a prime.
Note that a(n) >= A089026(n) for n > 2.
Comments