A028552 a(n) = n*(n+3).
0, 4, 10, 18, 28, 40, 54, 70, 88, 108, 130, 154, 180, 208, 238, 270, 304, 340, 378, 418, 460, 504, 550, 598, 648, 700, 754, 810, 868, 928, 990, 1054, 1120, 1188, 1258, 1330, 1404, 1480, 1558, 1638, 1720, 1804, 1890, 1978, 2068, 2160, 2254, 2350, 2448, 2548, 2650
Offset: 0
Examples
G.f. = 4*x + 10*x^2 + 18*x^3 + 28*x^4 + 40*x^5 + 54*x^6 + 70*x^7 + 88*x^8 + ...
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
- Patrick De Geest, Palindromic Quasipronics of the form n(n+x).
- Milan Janjic, Two Enumerative Functions.
- Mathematics Stack Exchange, Expected number of turns for a rook to move to top right-most corner?.
- Felix P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, Preprint on ResearchGate, March 2014.
- Aleksandar Petojević, A Note about the Pochhammer Symbol, Mathematica Moravica, Vol. 12-1 (2008), 37-42.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[n*(n+3): n in [0..150]]; // Vincenzo Librandi, Apr 21 2011
-
Maple
A028552 := proc(n) n*(n+3); end proc: # R. J. Mathar, Jan 29 2011
-
Mathematica
LinearRecurrence[{3,-3,1},{0,4,10},50] (* Harvey P. Dale, Feb 05 2012 *) Table[ChineseRemainder[{n, n + 1}, {n + 2, n + 3}], {n, -1, 80}] (* Zak Seidov, Oct 25 2014 *) Table[ChineseRemainder@@TakeDrop[Range[n,n+3],2],{n,-1,50}] (* Harvey P. Dale, Mar 14 2025 *)
-
Maxima
makelist(n*(n+3),n,0,20); /* Martin Ettl, Jan 22 2013 */
-
PARI
a(n)=n*(n+3) \\ Charles R Greathouse IV, Mar 16 2012
Formula
a(n) = 2*A000096(n).
a(n) = a(n-1) + 2*(n+1) for n>0, with a(0)=0. - Vincenzo Librandi, Aug 05 2010
Sum_{n>=1} 1/a(n) = 11/18 via Sum_{n>=0} 1/((n+x)*(n+y)) = (psi(x)-psi(y))/ (x-y). - R. J. Mathar, Mar 22 2011
G.f.: 2*x*(2 - x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 31 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), with a(0)=0, a(1)=4, a(2)=10. - Harvey P. Dale, Feb 05 2012
a(n) = 4*C(n+1,2) - 2*C(n,2) for n>=0. - Felix P. Muga II, Mar 11 2014
a(-3 - n) = a(n) for all n in Z. - Michael Somos, Mar 18 2014
E.g.f.: (x^3 + 4*x)*exp(x). - G. C. Greubel, Jul 20 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/3 - 5/18. - Amiram Eldar, Jan 15 2021
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = 2*cos(sqrt(13)*Pi/2)/Pi.
Product_{n>=1} (1 + 1/a(n)) = -6*cos(sqrt(5)*Pi/2)/Pi. (End)
Comments