A028864
Primes with digits in nondecreasing order.
Original entry on oeis.org
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 37, 47, 59, 67, 79, 89, 113, 127, 137, 139, 149, 157, 167, 179, 199, 223, 227, 229, 233, 239, 257, 269, 277, 337, 347, 349, 359, 367, 379, 389, 449, 457, 467, 479, 499, 557, 569, 577, 599, 677, 1117, 1123, 1129
Offset: 1
-
[p:p in PrimesUpTo(1200)| Reverse(Intseq(p)) eq Sort(Intseq(p))]; // Marius A. Burtea, Nov 29 2019
-
daoQ[n_] := Count[Differences[IntegerDigits[n]], ?(# < 0 &)] == 0; Select[Prime[Range[200]], daoQ] (* _Harvey P. Dale, Aug 16 2011 *)
Select[Prime[Range[200]],Min[Differences[IntegerDigits[#]]]>-1&] (* Harvey P. Dale, Mar 02 2023 *)
-
select(n->n=digits(n); n==vecsort(n), primes(500)) \\ Charles R Greathouse IV, Mar 15 2014
-
from itertools import count, islice, combinations_with_replacement
from sympy import isprime
def A028864_gen(): # generator of terms
yield from (2,3,5,7)
a, b = {'1':0,'2':1,'3':1,'4':2,'5':2,'6':2,'7':2,'8':3,'9':3}, (1,3,7,9)
for l in count(1):
for d in combinations_with_replacement('123456789',l):
k = 10*int(''.join(d))
for e in b[a[d[-1]]:]:
if isprime(m:=k+e):
yield m
A028864_list = list(islice(A028864_gen(),30)) # Chai Wah Wu, Dec 25 2023
-
j=2; y=as.bigz(c()); while(j<1000) {
x=sort(as.numeric(strsplit(as.character(j),spl="")[[1]]),decr=F)
if(j==paste(x[x>0],collapse="")) y=c(y,j)
j=nextprime(j)
} // Christian N. K. Anderson, Apr 04 2013
A052015
Primes with distinct digits in ascending order.
Original entry on oeis.org
2, 3, 5, 7, 13, 17, 19, 23, 29, 37, 47, 59, 67, 79, 89, 127, 137, 139, 149, 157, 167, 179, 239, 257, 269, 347, 349, 359, 367, 379, 389, 457, 467, 479, 569, 1237, 1249, 1259, 1279, 1289, 1367, 1459, 1489, 1567, 1579, 1789, 2347, 2357, 2389, 2459, 2467, 2579
Offset: 1
Last term is a(100) = 23456789.
-
b:= proc(n) `if`(isprime(n), n, [][]), seq(
b(parse(cat(n, j))), j=irem(n, 10)+1..9)
end:
sort([seq(b(n), n=1..9)])[]; # Alois P. Heinz, Jun 16 2025
-
t={};Do[p=Prime[n];If[Select[Differences[IntegerDigits[p]],#<=0&]=={},AppendTo[t,p]],{n,380}];t (* Jayanta Basu, May 04 2013 *)
Select[Prime[Range[5000]],Min[Differences[IntegerDigits[#]]]>0&] (* Harvey P. Dale, Jun 20 2015 *)
Select[FromDigits@# &/@Subsets@Range@9,PrimeQ] (* Hans Rudolf Widmer, Apr 08 2023 *)
-
A052015=vecextract( vecsort( vector( 511,i,isprime( t=eval( concat( vecextract(Vec("123456789"),i ))))*t),NULL,8),"^1") /* for old PARI versions replace,NULL,8),"^1" by ),"-100.." */ \\ M. F. Hasler, Jan 27 2009
-
from sympy import isprime
from itertools import combinations
def agen(): # generator of terms
for d in range(1, 9):
for c in combinations("123456789", d):
if isprime(t:=int("".join(c))):
yield t
print(list(agen())) # Michael S. Branicky, Dec 13 2023
A052014
Primes with distinct digits in descending order.
Original entry on oeis.org
2, 3, 5, 7, 31, 41, 43, 53, 61, 71, 73, 83, 97, 421, 431, 521, 541, 631, 641, 643, 653, 743, 751, 761, 821, 853, 863, 941, 953, 971, 983, 5431, 6421, 6521, 7321, 7541, 7621, 7643, 8431, 8521, 8543, 8641, 8731, 8741, 8753, 8761, 9421, 9431, 9521, 9631, 9643
Offset: 1
-
b:= proc(n) `if`(isprime(n), n, [][]), seq(
b(parse(cat(n, j))), j=1..irem(n, 10)-1)
end:
sort([seq(b(n), n=1..9)])[]; # Alois P. Heinz, Jun 16 2025
-
Select[Prime[Range[1200]], Max[DigitCount[#]] == 1 && And@@Negative[ Differences[IntegerDigits[#]]]&] (* Harvey P. Dale, Oct 22 2011 *)
t={}; Do[p=Prime[n]; If[Select[Differences[IntegerDigits[p]], # >= 0&] == {}, AppendTo[t,p]], {n,1195}]; t (* Jayanta Basu, May 04 2013 *)
-
A052014=[]; for( i=1,1023, c=-1; isprime( t=sum( j=0,9, if(bittest(i,j),j*10^c++))) & A052014=concat(A052014,t)); A052014=vecsort(A052014)
A372034
For a positive number k, let L(k) denote the list consisting of k followed by the prime factors of k, with repetition, in nondecreasing order; sequence gives composite k such that the digits of L(k) are in nonincreasing order.
Original entry on oeis.org
4, 8, 9, 22, 32, 33, 44, 55, 64, 77, 88, 93, 99, 422, 633, 775, 844, 933, 993, 4222, 4442, 6333, 6655, 6663, 7533, 7744, 7775, 8444, 8884, 9663, 9993, 44222, 66333, 88444, 99633, 99933, 99993, 933333, 966333, 996663, 999993, 4442222, 6663333, 7777775, 8884444, 9663333, 9666633, 9666663
Offset: 1
The initial terms and their factorizations are:
4 = [2, 2]
8 = [2, 2, 2]
9 = [3, 3]
22 = [2, 11]
32 = [2, 2, 2, 2, 2]
33 = [3, 11]
44 = [2, 2, 11]
55 = [5, 11]
64 = [2, 2, 2, 2, 2, 2]
77 = [7, 11]
88 = [2, 2, 2, 11]
93 = [3, 31]
99 = [3, 3, 11]
422 = [2, 211]
633 = [3, 211]
775 = [5, 5, 31]
844 = [2, 2, 211]
933 = [3, 311]
993 = [3, 331]
4222 = [2, 2111]
4442 = [2, 2221]
6333 = [3, 2111]
6655 = [5, 11, 11, 11]
6663 = [3, 2221]
7533 = [3, 3, 3, 3, 3, 31]
7744 = [2, 2, 2, 2, 2, 2, 11, 11]
...
-
from sympy import factorint, isprime
def ni(s): return sorted(s, reverse=True) == list(s)
def ok(n):
if n < 4 or isprime(n): return False
s, f = str(n), "".join(str(p)*e for p, e in factorint(n).items())
return ni(s+f)
print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Apr 23 2024
-
# faster for initial segment of sequence
from sympy import factorint, isprime
from itertools import islice, combinations_with_replacement as mc
def ni(s): return s == "".join(sorted(s, reverse=True))
def bgen(d):
yield from ("".join(m) for m in mc("987654321", d))
def agen(): # generator of terms
for d in range(1, 70):
out = set()
for s in bgen(d):
t = int(s)
if t < 4 or isprime(t): continue
if ni(s+"".join(str(p)*e for p, e in factorint(t).items())):
out.add(t)
yield from sorted(out)
print(list(islice(agen(), 50))) # Michael S. Branicky, Apr 23 2024
A211654
Primes that remain prime when their digits are sorted into nondecreasing order.
Original entry on oeis.org
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 47, 59, 67, 71, 73, 79, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 157, 167, 173, 179, 193, 197, 199, 223, 227, 229, 233, 239, 257, 269, 271, 277, 293, 307, 311, 317, 337, 347, 349, 359, 367, 373
Offset: 1
173 is prime and after the digits are sorted into nondecreasing order we obtain 137, which is prime.
-
[p:p in PrimesUpTo(400)| IsPrime(Seqint(Reverse(Sort(Intseq(p,10)))))]; // Marius A. Burtea, Jul 30 2019
-
Select[Prime[Range[200]], PrimeQ[FromDigits[Sort[IntegerDigits[#]]]] &] (* T. D. Noe, Apr 17 2012 *)
-
select( is_A211654(p)={isprime(fromdigits(vecsort(digits(p))))&&isprime(p)}, primes([1,999])) \\ M. F. Hasler, Jul 30 2019
A190220
Numbers all of whose divisors are numbers whose decimal digits are in nonincreasing order.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 20, 21, 22, 31, 33, 40, 41, 43, 44, 53, 55, 61, 62, 63, 66, 71, 73, 77, 82, 83, 86, 88, 93, 97, 99, 110, 211, 220, 311, 331, 421, 422, 431, 433, 440, 443, 511, 521, 541, 622, 631, 633, 641, 643, 653, 661, 662, 733, 743, 751
Offset: 1
Number 110 is in sequence because all divisors of 110 (1, 2, 5, 10, 11, 22, 55, 110) are numbers whose decimal digits are in nonincreasing order.
-
with(numtheory): A190220 := proc(n) option remember: local d, dd, i, j, k, m, poten: if(n=1)then return 1: fi: for k from procname(n-1)+1 do d:=divisors(k): poten:=1: for i from 1 to nops(d) do m:=-1: dd:=convert(d[i], base, 10): for j from 1 to nops(dd) do if(m<=dd[j])then m:=dd[j]: else poten:=0: break: fi: od: if(poten=0)then break:fi: od: if(poten=1)then return k: fi: od: end: seq(A190220(n), n=1..64); # Nathaniel Johnston, May 14 2011
A211655
Down-sortable primes: Primes that are also primes after digits are sorted into decreasing order.
Original entry on oeis.org
2, 3, 5, 7, 11, 13, 17, 31, 37, 41, 43, 53, 61, 71, 73, 79, 83, 97, 113, 131, 149, 157, 163, 167, 179, 181, 191, 197, 199, 211, 241, 251, 281, 311, 313, 331, 337, 347, 359, 373, 389, 419, 421, 431, 433, 443, 461, 463, 491, 521, 541, 563, 571, 593, 613, 617, 631, 641, 643, 653
Offset: 1
131 is prime and after sorting its digits into nonincreasing order we obtain 311, which is prime.
163 is in the sequence because its digits sorted in decreasing order give 631, which is prime. (Note that this is not a reversible prime, since 361 = 19^2.)
A345326
Number of primes less than 10^n with digits in nonincreasing order.
Original entry on oeis.org
0, 4, 14, 49, 125, 296, 646, 1304, 2459, 4543, 7882, 13272, 21856, 34934, 53446, 82055, 121322, 175498, 251714, 354810, 488440, 676065, 914834, 1220629, 1627770, 2135954, 2759889, 3590609, 4602572, 5830588, 7386200, 9266652, 11469407, 14314939, 17658240
Offset: 0
-
Table[Length@Select[Prime@Range[PrimePi[10^n]],OrderedQ@Reverse@IntegerDigits@#&],{n,0,7}] (* Giorgos Kalogeropoulos, Jul 22 2021 *)
-
from sympy import isprime
from itertools import accumulate, combinations_with_replacement as mc
def numwithdigs(d):
if d == 0: return 0
nonincreasing = (int("".join(m)) for m in mc("987654321", d))
return len(list(filter(isprime, nonincreasing)))
def aupto(nn): return list(accumulate(numwithdigs(d) for d in range(nn+1)))
print(aupto(14)) # Michael S. Branicky, Jul 22 2021
A061245
Prime numbers with odd digits in descending order.
Original entry on oeis.org
3, 5, 7, 11, 31, 53, 71, 73, 97, 311, 331, 733, 751, 773, 911, 953, 971, 977, 991, 997, 3331, 5333, 5531, 7331, 7333, 7753, 9311, 9511, 9533, 9551, 9733, 9931, 9973, 33311, 33331, 55331, 55333, 55511, 73331, 75511, 75533, 75553, 77551, 77711
Offset: 1
A364831
Primes whose digits are prime and in nonincreasing order.
Original entry on oeis.org
2, 3, 5, 7, 53, 73, 733, 773, 5333, 7333, 7753, 55333, 75533, 75553, 77773, 733333, 755333, 775553, 7553333, 7555333, 7775533, 7777753, 55555333, 55555553, 77755553, 555553333, 755555533, 773333333, 777555553, 777773333, 777775333, 777775553, 777777773
Offset: 1
-
Select[Prime[Range[3100000]], AllTrue[d = IntegerDigits[#], PrimeQ] && GreaterEqual @@ d &]
-
from itertools import count, islice, chain, combinations_with_replacement
from sympy import isprime
def A364831_gen(): # generator of terms
yield 2
yield from chain.from_iterable((sorted(s for d in combinations_with_replacement('753',l) if isprime(s:=int(''.join(d)))) for l in count(1)))
A364831_list = list(islice(A364831_gen(),30)) # Chai Wah Wu, Sep 10 2023
Showing 1-10 of 11 results.
Comments