A244991
Numbers whose greatest prime factor is a prime with an odd index; n such that A006530(n) is in A031368.
Original entry on oeis.org
2, 4, 5, 8, 10, 11, 15, 16, 17, 20, 22, 23, 25, 30, 31, 32, 33, 34, 40, 41, 44, 45, 46, 47, 50, 51, 55, 59, 60, 62, 64, 66, 67, 68, 69, 73, 75, 77, 80, 82, 83, 85, 88, 90, 92, 93, 94, 97, 99, 100, 102, 103, 109, 110, 115, 118, 119, 120, 121, 123, 124, 125, 127, 128
Offset: 1
From _Gus Wiseman_, Feb 08 2021: (Start)
The sequence of terms together with their prime indices begins:
2: {1} 32: {1,1,1,1,1} 64: {1,1,1,1,1,1}
4: {1,1} 33: {2,5} 66: {1,2,5}
5: {3} 34: {1,7} 67: {19}
8: {1,1,1} 40: {1,1,1,3} 68: {1,1,7}
10: {1,3} 41: {13} 69: {2,9}
11: {5} 44: {1,1,5} 73: {21}
15: {2,3} 45: {2,2,3} 75: {2,3,3}
16: {1,1,1,1} 46: {1,9} 77: {4,5}
17: {7} 47: {15} 80: {1,1,1,1,3}
20: {1,1,3} 50: {1,3,3} 82: {1,13}
22: {1,5} 51: {2,7} 83: {23}
23: {9} 55: {3,5} 85: {3,7}
25: {3,3} 59: {17} 88: {1,1,1,5}
30: {1,2,3} 60: {1,1,2,3} 90: {1,2,2,3}
31: {11} 62: {1,11} 92: {1,1,9}
(End)
Looking at least instead of greatest prime index gives
A026804.
The partitions with these Heinz numbers are counted by
A027193.
The case where Omega is odd also is
A340386.
A300063 ranks partitions of odd numbers.
A061395 selects maximum prime index.
A066208 ranks partitions into odd parts.
A112798 lists the prime indices of each positive integer.
A340931 ranks odd-length partitions of odd numbers.
Original entry on oeis.org
3, 6, 6, 6, 8, 10, 6, 12, 8, 6, 10, 14, 6, 6, 18, 10, 12, 8, 10, 12, 12, 6, 14, 16, 6, 8, 16, 12, 8, 6, 24, 6, 18, 16, 6, 14, 12, 10, 12, 18, 12, 8, 10, 12, 6, 20, 12, 10, 14, 24, 16, 8, 16, 12, 8, 10, 14, 12, 10, 8, 16, 14, 18, 18, 12, 12, 10, 12, 24, 14, 12, 6, 24, 6, 18, 6, 24, 12, 18, 10
Offset: 1
A066207
All primes that divide n are of the form prime(2k), where prime(k) is k-th prime.
Original entry on oeis.org
1, 3, 7, 9, 13, 19, 21, 27, 29, 37, 39, 43, 49, 53, 57, 61, 63, 71, 79, 81, 87, 89, 91, 101, 107, 111, 113, 117, 129, 131, 133, 139, 147, 151, 159, 163, 169, 171, 173, 181, 183, 189, 193, 199, 203, 213, 223, 229, 237, 239, 243, 247, 251, 259, 261, 263, 267, 271, 273
Offset: 1
39 is included because 3 * 13 = prime(2) * prime(6) and 2 and 6 are both even.
Numbers in the odd bisection of
A336321.
-
Select[Range[273], AllTrue[PrimePi@ FactorInteger[#][[All, 1]], EvenQ] &] (* Michael De Vlieger, Dec 11 2017, range adjusted by Antti Karttunen, Jul 18 2020 *)
-
{ n=0; for (m=2, 10^9, f=factor(m); b=1; for(i=1, matsize(f)[1], if (primepi(f[i, 1])%2, b=0; break)); if (b, write("b066207.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Feb 06 2010
-
isA066207(n) = (!#select(p -> (primepi(p)%2), factor(n)[,1])); \\ Antti Karttunen, Jul 18 2020
a(1) = 1 inserted (and the indexing of the rest of terms changed) by
Antti Karttunen, Jul 18 2020
A031215
Even-indexed primes: a(n) = prime(2n).
Original entry on oeis.org
3, 7, 13, 19, 29, 37, 43, 53, 61, 71, 79, 89, 101, 107, 113, 131, 139, 151, 163, 173, 181, 193, 199, 223, 229, 239, 251, 263, 271, 281, 293, 311, 317, 337, 349, 359, 373, 383, 397, 409, 421, 433, 443, 457, 463, 479, 491, 503, 521, 541, 557, 569
Offset: 1
A300272
Sorted list of Heinz numbers of odd partitions.
Original entry on oeis.org
2, 5, 8, 11, 17, 20, 23, 31, 32, 41, 44, 47, 50, 59, 67, 68, 73, 80, 83, 92, 97, 103, 109, 110, 124, 125, 127, 128, 137, 149, 157, 164, 167, 170, 176, 179, 188, 191, 197, 200, 211, 227, 230, 233, 236, 241, 242, 257, 268, 269, 272, 275, 277, 283, 292, 307, 310
Offset: 1
Sequence of odd partitions begins: (1), (3), (111), (5), (7), (311), (9), (11), (11111), (13), (511), (15), (331), (17), (19), (711), (21), (31111), (23), (911), (25), (27), (29), (531), (1111), (333), (31), (1111111).
-
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],OddQ[Total[primeMS[#]]]&&And@@OddQ/@primeMS[#]&]
A338907
Semiprimes whose prime indices sum to an odd number.
Original entry on oeis.org
6, 14, 15, 26, 33, 35, 38, 51, 58, 65, 69, 74, 77, 86, 93, 95, 106, 119, 122, 123, 141, 142, 143, 145, 158, 161, 177, 178, 185, 201, 202, 209, 214, 215, 217, 219, 221, 226, 249, 262, 265, 278, 287, 291, 299, 302, 305, 309, 319, 323, 326, 327, 329, 346, 355
Offset: 1
The sequence of terms together with their prime indices begins:
6: {1,2} 95: {3,8} 202: {1,26}
14: {1,4} 106: {1,16} 209: {5,8}
15: {2,3} 119: {4,7} 214: {1,28}
26: {1,6} 122: {1,18} 215: {3,14}
33: {2,5} 123: {2,13} 217: {4,11}
35: {3,4} 141: {2,15} 219: {2,21}
38: {1,8} 142: {1,20} 221: {6,7}
51: {2,7} 143: {5,6} 226: {1,30}
58: {1,10} 145: {3,10} 249: {2,23}
65: {3,6} 158: {1,22} 262: {1,32}
69: {2,9} 161: {4,9} 265: {3,16}
74: {1,12} 177: {2,17} 278: {1,34}
77: {4,5} 178: {1,24} 287: {4,13}
86: {1,14} 185: {3,12} 291: {2,25}
93: {2,11} 201: {2,19} 299: {6,9}
A031368 looks at primes instead of semiprimes.
A098350 has this as union of odd-indexed antidiagonals.
A300063 looks at all numbers (not just semiprimes).
A338904 has this as union of odd-indexed rows.
A056239 gives the sum of prime indices (Heinz weight).
A087112 groups semiprimes by greater factor.
A338908 lists squarefree semiprimes of even weight.
Cf.
A000040,
A001222,
A014342,
A024697,
A062198,
A112798,
A300061,
A319242,
A320655,
A338910,
A339003.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],PrimeOmega[#]==2&&OddQ[Total[primeMS[#]]]&]
-
from math import isqrt
from sympy import primepi, primerange
def A338907(n):
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x-sum((primepi(x//p)-a>>1) for a,p in enumerate(primerange(isqrt(x)+1)))
return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025
A297845
Encoded multiplication table for polynomials in one indeterminate with nonnegative integer coefficients. Symmetric square array T(n, k) read by antidiagonals, n > 0 and k > 0. See comment for details.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 9, 9, 5, 1, 1, 6, 7, 16, 7, 6, 1, 1, 7, 15, 25, 25, 15, 7, 1, 1, 8, 11, 36, 11, 36, 11, 8, 1, 1, 9, 27, 49, 35, 35, 49, 27, 9, 1, 1, 10, 25, 64, 13, 90, 13, 64, 25, 10, 1, 1, 11, 21, 81, 125, 77, 77, 125, 81
Offset: 1
Array T(n, k) begins:
n\k| 1 2 3 4 5 6 7 8 9 10
---+------------------------------------------------
1| 1 1 1 1 1 1 1 1 1 1 -> A000012
2| 1 2 3 4 5 6 7 8 9 10 -> A000027
3| 1 3 5 9 7 15 11 27 25 21 -> A003961
4| 1 4 9 16 25 36 49 64 81 100 -> A000290
5| 1 5 7 25 11 35 13 125 49 55 -> A357852
6| 1 6 15 36 35 90 77 216 225 210 -> A191002
7| 1 7 11 49 13 77 17 343 121 91
8| 1 8 27 64 125 216 343 512 729 1000 -> A000578
9| 1 9 25 81 49 225 121 729 625 441
10| 1 10 21 100 55 210 91 1000 441 550
From _Peter Munn_, Jun 24 2021: (Start)
The encoding, n, of polynomials, f(n), that is used for the table is further described in A206284. Examples of encoded polynomials:
n f(n) n f(n)
1 0 16 4
2 1 17 x^6
3 x 21 x^3 + x
4 2 25 2x^2
5 x^2 27 3x
6 x + 1 35 x^3 + x^2
7 x^3 36 2x + 2
8 3 49 2x^3
9 2x 55 x^4 + x^2
10 x^2 + 1 64 6
11 x^4 77 x^4 + x^3
12 x + 2 81 4x
13 x^5 90 x^2 + 2x + 1
15 x^2 + x 91 x^5 + x^3
(End)
Integers in the ideal of the related ring (see Jun 2021 comment) generated by S: S={3}:
A005408, S={4}:
A000290\{0}, S={4,3}:
A003159, S={5}:
A007310, S={5,4}:
A339690, S={6}:
A325698, S={6,4}:
A028260, S={7}:
A007775, S={8}:
A000578\{0}, S={8,3}:
A191257, S={8,6}:
A332820, S={9}:
A016754, S={10,4}:
A340784, S={11}:
A008364, S={12,8}:
A145784, S={13}:
A008365, S={15,4}:
A345452, S={15,9}:
A046337, S={16}:
A000583\{0}, S={17}:
A008366.
Equivalent sequence for polynomial composition:
A326376.
-
T(n,k) = my (f=factor(n), p=apply(primepi, f[, 1]~), g=factor(k), q=apply(primepi, g[, 1]~)); prod (i=1, #p, prod(j=1, #q, prime(p[i]+q[j]-1)^(f[i, 2]*g[j, 2])))
A341446
Heinz numbers of integer partitions whose only odd part is the smallest.
Original entry on oeis.org
2, 5, 6, 11, 14, 17, 18, 23, 26, 31, 35, 38, 41, 42, 47, 54, 58, 59, 65, 67, 73, 74, 78, 83, 86, 95, 97, 98, 103, 106, 109, 114, 122, 126, 127, 137, 142, 143, 145, 149, 157, 158, 162, 167, 174, 178, 179, 182, 185, 191, 197, 202, 209, 211, 214, 215, 222, 226
Offset: 1
The sequence of partitions together with their Heinz numbers begins:
2: (1) 54: (2,2,2,1) 109: (29)
5: (3) 58: (10,1) 114: (8,2,1)
6: (2,1) 59: (17) 122: (18,1)
11: (5) 65: (6,3) 126: (4,2,2,1)
14: (4,1) 67: (19) 127: (31)
17: (7) 73: (21) 137: (33)
18: (2,2,1) 74: (12,1) 142: (20,1)
23: (9) 78: (6,2,1) 143: (6,5)
26: (6,1) 83: (23) 145: (10,3)
31: (11) 86: (14,1) 149: (35)
35: (4,3) 95: (8,3) 157: (37)
38: (8,1) 97: (25) 158: (22,1)
41: (13) 98: (4,4,1) 162: (2,2,2,2,1)
42: (4,2,1) 103: (27) 167: (39)
47: (15) 106: (16,1) 174: (10,2,1)
These partitions are counted by
A035363 (shifted left once).
Terms of
A340932 can be factored into elements of this sequence.
A026804 counts partitions whose smallest part is odd.
A032742 selects largest proper divisor.
A055396 selects smallest prime index.
A061395 selects largest prime index.
A066207 lists numbers with all even prime indices.
A066208 lists numbers with all odd prime indices.
A112798 lists the prime indices of each positive integer.
A244991 lists numbers whose greatest prime index is odd.
A340932 lists numbers whose smallest prime index is odd.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[2,100],OddQ[First[primeMS[#]]]&&And@@EvenQ[Rest[primeMS[#]]]&]
A340932
Numbers whose least prime index is odd. Heinz numbers of integer partitions whose last part is odd.
Original entry on oeis.org
2, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23, 24, 25, 26, 28, 30, 31, 32, 34, 35, 36, 38, 40, 41, 42, 44, 46, 47, 48, 50, 52, 54, 55, 56, 58, 59, 60, 62, 64, 65, 66, 67, 68, 70, 72, 73, 74, 76, 78, 80, 82, 83, 84, 85, 86, 88, 90, 92, 94, 95, 96, 97
Offset: 1
The sequence of terms together with their prime indices begins:
2: {1} 24: {1,1,1,2} 46: {1,9}
4: {1,1} 25: {3,3} 47: {15}
5: {3} 26: {1,6} 48: {1,1,1,1,2}
6: {1,2} 28: {1,1,4} 50: {1,3,3}
8: {1,1,1} 30: {1,2,3} 52: {1,1,6}
10: {1,3} 31: {11} 54: {1,2,2,2}
11: {5} 32: {1,1,1,1,1} 55: {3,5}
12: {1,1,2} 34: {1,7} 56: {1,1,1,4}
14: {1,4} 35: {3,4} 58: {1,10}
16: {1,1,1,1} 36: {1,1,2,2} 59: {17}
17: {7} 38: {1,8} 60: {1,1,2,3}
18: {1,2,2} 40: {1,1,1,3} 62: {1,11}
20: {1,1,3} 41: {13} 64: {1,1,1,1,1,1}
22: {1,5} 42: {1,2,4} 65: {3,6}
23: {9} 44: {1,1,5} 66: {1,2,5}
These partitions are counted by
A026804.
The case where all prime indices are odd is
A066208.
Looking at greatest prime index instead of least gives
A244991.
A061395 selects greatest prime index.
A112798 lists the prime indices of each positive integer.
A349158
Heinz numbers of integer partitions with exactly one odd part.
Original entry on oeis.org
2, 5, 6, 11, 14, 15, 17, 18, 23, 26, 31, 33, 35, 38, 41, 42, 45, 47, 51, 54, 58, 59, 65, 67, 69, 73, 74, 77, 78, 83, 86, 93, 95, 97, 98, 99, 103, 105, 106, 109, 114, 119, 122, 123, 126, 127, 135, 137, 141, 142, 143, 145, 149, 153, 157, 158, 161, 162, 167, 174
Offset: 1
The terms and corresponding partitions begin:
2: (1) 42: (4,2,1) 86: (14,1)
5: (3) 45: (3,2,2) 93: (11,2)
6: (2,1) 47: (15) 95: (8,3)
11: (5) 51: (7,2) 97: (25)
14: (4,1) 54: (2,2,2,1) 98: (4,4,1)
15: (3,2) 58: (10,1) 99: (5,2,2)
17: (7) 59: (17) 103: (27)
18: (2,2,1) 65: (6,3) 105: (4,3,2)
23: (9) 67: (19) 106: (16,1)
26: (6,1) 69: (9,2) 109: (29)
31: (11) 73: (21) 114: (8,2,1)
33: (5,2) 74: (12,1) 119: (7,4)
35: (4,3) 77: (5,4) 122: (18,1)
38: (8,1) 78: (6,2,1) 123: (13,2)
41: (13) 83: (23) 126: (4,2,2,1)
These partitions are counted by
A000070 up to 0's.
These are the positions of 1's in
A257991.
The even prime indices are counted by
A257992.
The conjugate partitions are ranked by
A345958.
A122111 is a representation of partition conjugation.
A316524 gives the alternating sum of prime indices (reverse:
A344616).
A325698 ranks partitions with as many even as odd parts, counted by
A045931.
A349157 ranks partitions with as many even parts as odd conjugate parts.
Cf.
A000700,
A001222,
A027187,
A027193,
A028260,
A031368 (primes with odd index),
A035363,
A215366,
A277579,
A300063,
A349151.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Count[primeMS[#],_?OddQ]==1&]
Showing 1-10 of 53 results.
Comments