cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 53 results. Next

A244991 Numbers whose greatest prime factor is a prime with an odd index; n such that A006530(n) is in A031368.

Original entry on oeis.org

2, 4, 5, 8, 10, 11, 15, 16, 17, 20, 22, 23, 25, 30, 31, 32, 33, 34, 40, 41, 44, 45, 46, 47, 50, 51, 55, 59, 60, 62, 64, 66, 67, 68, 69, 73, 75, 77, 80, 82, 83, 85, 88, 90, 92, 93, 94, 97, 99, 100, 102, 103, 109, 110, 115, 118, 119, 120, 121, 123, 124, 125, 127, 128
Offset: 1

Views

Author

Antti Karttunen, Jul 21 2014

Keywords

Comments

Equally, numbers n for which A061395(n) is odd.
A122111 maps each one of these numbers to a unique term of A026424 and vice versa.
If the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), these are the Heinz numbers of partitions whose greatest part is odd, counted by A027193. - Gus Wiseman, Feb 08 2021

Examples

			From _Gus Wiseman_, Feb 08 2021: (Start)
The sequence of terms together with their prime indices begins:
      2: {1}           32: {1,1,1,1,1}     64: {1,1,1,1,1,1}
      4: {1,1}         33: {2,5}           66: {1,2,5}
      5: {3}           34: {1,7}           67: {19}
      8: {1,1,1}       40: {1,1,1,3}       68: {1,1,7}
     10: {1,3}         41: {13}            69: {2,9}
     11: {5}           44: {1,1,5}         73: {21}
     15: {2,3}         45: {2,2,3}         75: {2,3,3}
     16: {1,1,1,1}     46: {1,9}           77: {4,5}
     17: {7}           47: {15}            80: {1,1,1,1,3}
     20: {1,1,3}       50: {1,3,3}         82: {1,13}
     22: {1,5}         51: {2,7}           83: {23}
     23: {9}           55: {3,5}           85: {3,7}
     25: {3,3}         59: {17}            88: {1,1,1,5}
     30: {1,2,3}       60: {1,1,2,3}       90: {1,2,2,3}
     31: {11}          62: {1,11}          92: {1,1,9}
(End)
		

Crossrefs

Complement: A244990.
Looking at least instead of greatest prime index gives A026804.
The partitions with these Heinz numbers are counted by A027193.
The case where Omega is odd also is A340386.
A001222 counts prime factors.
A056239 adds up prime indices.
A300063 ranks partitions of odd numbers.
A061395 selects maximum prime index.
A066208 ranks partitions into odd parts.
A112798 lists the prime indices of each positive integer.
A340931 ranks odd-length partitions of odd numbers.

Programs

  • Mathematica
    Select[Range[100],OddQ[PrimePi[FactorInteger[#][[-1,1]]]]&] (* Gus Wiseman, Feb 08 2021 *)

Formula

For all n, A244989(a(n)) = n.

A155067 First differences of A031368.

Original entry on oeis.org

3, 6, 6, 6, 8, 10, 6, 12, 8, 6, 10, 14, 6, 6, 18, 10, 12, 8, 10, 12, 12, 6, 14, 16, 6, 8, 16, 12, 8, 6, 24, 6, 18, 16, 6, 14, 12, 10, 12, 18, 12, 8, 10, 12, 6, 20, 12, 10, 14, 24, 16, 8, 16, 12, 8, 10, 14, 12, 10, 8, 16, 14, 18, 18, 12, 12, 10, 12, 24, 14, 12, 6, 24, 6, 18, 6, 24, 12, 18, 10
Offset: 1

Views

Author

Paul Curtz, Jan 19 2009

Keywords

Comments

All but the first term are even.

Crossrefs

Formula

a(n)= A031368(n+1)-A031368(n).
a(n)= A001223(2n-1)+A001223(2n). - R. J. Mathar, Feb 27 2009
a(n)= A031131(2n-1). - R. J. Mathar, Feb 27 2009

Extensions

Edited and extended by R. J. Mathar, Feb 27 2009

A066207 All primes that divide n are of the form prime(2k), where prime(k) is k-th prime.

Original entry on oeis.org

1, 3, 7, 9, 13, 19, 21, 27, 29, 37, 39, 43, 49, 53, 57, 61, 63, 71, 79, 81, 87, 89, 91, 101, 107, 111, 113, 117, 129, 131, 133, 139, 147, 151, 159, 163, 169, 171, 173, 181, 183, 189, 193, 199, 203, 213, 223, 229, 237, 239, 243, 247, 251, 259, 261, 263, 267, 271, 273
Offset: 1

Views

Author

Leroy Quet, Dec 16 2001

Keywords

Comments

The partitions into even parts, encoded by their Heinz numbers. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1..r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: 63 ( = 3*3*7) is in the sequence because it is the Heinz number of the partition [2, 2, 4]. - Emeric Deutsch, May 19 2015
Numbers divisible only by primes with even indices (A031215). - Michael De Vlieger, Dec 11 2017
Numbers that are not divisible by any prime with an odd index (A031368). - Antti Karttunen, Jul 18 2020
For every positive integer m there exists a unique ordered pair of positive integers (j,k) such that m = a(j)*A066208(k). - Christopher Scussel, Jul 01 2023

Examples

			39 is included because 3 * 13 = prime(2) * prime(6) and 2 and 6 are both even.
		

Crossrefs

Cf. A297002 (a permutation).
Numbers in the odd bisection of A336321.

Programs

  • Mathematica
    Select[Range[273], AllTrue[PrimePi@ FactorInteger[#][[All, 1]], EvenQ] &] (* Michael De Vlieger, Dec 11 2017, range adjusted by Antti Karttunen, Jul 18 2020 *)
  • PARI
    { n=0; for (m=2, 10^9, f=factor(m); b=1; for(i=1, matsize(f)[1], if (primepi(f[i, 1])%2, b=0; break)); if (b, write("b066207.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Feb 06 2010
    
  • PARI
    isA066207(n) = (!#select(p -> (primepi(p)%2), factor(n)[,1])); \\ Antti Karttunen, Jul 18 2020

Extensions

Offset changed from 0 to 1 by Harry J. Smith, Feb 06 2010
a(53)-a(58) from Harry J. Smith, Feb 06 2010
a(1) = 1 inserted (and the indexing of the rest of terms changed) by Antti Karttunen, Jul 18 2020

A031215 Even-indexed primes: a(n) = prime(2n).

Original entry on oeis.org

3, 7, 13, 19, 29, 37, 43, 53, 61, 71, 79, 89, 101, 107, 113, 131, 139, 151, 163, 173, 181, 193, 199, 223, 229, 239, 251, 263, 271, 281, 293, 311, 317, 337, 349, 359, 373, 383, 397, 409, 421, 433, 443, 457, 463, 479, 491, 503, 521, 541, 557, 569
Offset: 1

Views

Author

Keywords

Comments

Also every second odd prime. - Cino Hilliard, Dec 02 2007
If n > 1, then a(n) is less than, and asymptotic to, the n-th Ramanujan prime R_n = A104272(n). Research questions on the difference R_n - a(n) are at A104272. - Jonathan Sondow, Dec 16 2013

Crossrefs

Cf. A000040, A031368 (odd-indexed primes), A104272, A105720, A161463, A179740, A233739.

Programs

Formula

a(n) = A104272(n) - A233739(n). - Jonathan Sondow, Dec 16 2013
a(n) = A105720(n) - A161463(n). - Torlach Rush, May 31 2021

A300272 Sorted list of Heinz numbers of odd partitions.

Original entry on oeis.org

2, 5, 8, 11, 17, 20, 23, 31, 32, 41, 44, 47, 50, 59, 67, 68, 73, 80, 83, 92, 97, 103, 109, 110, 124, 125, 127, 128, 137, 149, 157, 164, 167, 170, 176, 179, 188, 191, 197, 200, 211, 227, 230, 233, 236, 241, 242, 257, 268, 269, 272, 275, 277, 283, 292, 307, 310
Offset: 1

Views

Author

Gus Wiseman, Mar 01 2018

Keywords

Comments

An odd partition is an integer partition of an odd number into an odd number of parts, all of which are odd.
Any product of three members of this sequence is also in the sequence.

Examples

			Sequence of odd partitions begins: (1), (3), (111), (5), (7), (311), (9), (11), (11111), (13), (511), (15), (331), (17), (19), (711), (21), (31111), (23), (911), (25), (27), (29), (531), (1111), (333), (31), (1111111).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],OddQ[Total[primeMS[#]]]&&And@@OddQ/@primeMS[#]&]

A338907 Semiprimes whose prime indices sum to an odd number.

Original entry on oeis.org

6, 14, 15, 26, 33, 35, 38, 51, 58, 65, 69, 74, 77, 86, 93, 95, 106, 119, 122, 123, 141, 142, 143, 145, 158, 161, 177, 178, 185, 201, 202, 209, 214, 215, 217, 219, 221, 226, 249, 262, 265, 278, 287, 291, 299, 302, 305, 309, 319, 323, 326, 327, 329, 346, 355
Offset: 1

Views

Author

Gus Wiseman, Nov 28 2020

Keywords

Comments

All terms are squarefree (A005117).
A semiprime is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.
The semiprimes in A300063; the semiprimes in A332820. - Peter Munn, Dec 25 2020

Examples

			The sequence of terms together with their prime indices begins:
      6: {1,2}      95: {3,8}     202: {1,26}
     14: {1,4}     106: {1,16}    209: {5,8}
     15: {2,3}     119: {4,7}     214: {1,28}
     26: {1,6}     122: {1,18}    215: {3,14}
     33: {2,5}     123: {2,13}    217: {4,11}
     35: {3,4}     141: {2,15}    219: {2,21}
     38: {1,8}     142: {1,20}    221: {6,7}
     51: {2,7}     143: {5,6}     226: {1,30}
     58: {1,10}    145: {3,10}    249: {2,23}
     65: {3,6}     158: {1,22}    262: {1,32}
     69: {2,9}     161: {4,9}     265: {3,16}
     74: {1,12}    177: {2,17}    278: {1,34}
     77: {4,5}     178: {1,24}    287: {4,13}
     86: {1,14}    185: {3,12}    291: {2,25}
     93: {2,11}    201: {2,19}    299: {6,9}
		

Crossrefs

A031368 looks at primes instead of semiprimes.
A098350 has this as union of odd-indexed antidiagonals.
A300063 looks at all numbers (not just semiprimes).
A338904 has this as union of odd-indexed rows.
A338906 is the even version.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A056239 gives the sum of prime indices (Heinz weight).
A084126 and A084127 give the prime factors of semiprimes.
A087112 groups semiprimes by greater factor.
A289182/A115392 list the positions of odd/even terms in A001358.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338908 lists squarefree semiprimes of even weight.
A339114/A339115 give the least/greatest semiprime of weight n.
Subsequence of A332820.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],PrimeOmega[#]==2&&OddQ[Total[primeMS[#]]]&]
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A338907(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum((primepi(x//p)-a>>1) for a,p in enumerate(primerange(isqrt(x)+1)))
        return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025

Formula

Complement of A338906 in A001358.

A297845 Encoded multiplication table for polynomials in one indeterminate with nonnegative integer coefficients. Symmetric square array T(n, k) read by antidiagonals, n > 0 and k > 0. See comment for details.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 4, 1, 1, 5, 9, 9, 5, 1, 1, 6, 7, 16, 7, 6, 1, 1, 7, 15, 25, 25, 15, 7, 1, 1, 8, 11, 36, 11, 36, 11, 8, 1, 1, 9, 27, 49, 35, 35, 49, 27, 9, 1, 1, 10, 25, 64, 13, 90, 13, 64, 25, 10, 1, 1, 11, 21, 81, 125, 77, 77, 125, 81
Offset: 1

Views

Author

Rémy Sigrist, Jan 10 2018

Keywords

Comments

For any number n > 0, let f(n) be the polynomial in a single indeterminate x where the coefficient of x^e is the prime(1+e)-adic valuation of n (where prime(k) denotes the k-th prime); f establishes a bijection between the positive numbers and the polynomials in a single indeterminate x with nonnegative integer coefficients; let g be the inverse of f; T(n, k) = g(f(n) * f(k)).
This table has many similarities with A248601.
For any n > 0 and m > 0, f(n * m) = f(n) + f(m).
Also, f(1) = 0 and f(2) = 1.
The function f can be naturally extended to the set of positive rational numbers: if r = u/v (not necessarily in reduced form), then f(r) = f(u) - f(v); as such, f is a homomorphism from the multiplicative group of positive rational numbers to the additive group of polynomials of a single indeterminate x with integer coefficients.
See A297473 for the main diagonal of T.
As a binary operation, T(.,.) is related to A306697(.,.) and A329329(.,.). When their operands are terms of A050376 (sometimes called Fermi-Dirac primes) the three operations give the same result. However the rest of the multiplication table for T(.,.) can be derived from these results because T(.,.) distributes over integer multiplication (A003991), whereas for A306697 and A329329, the equivalent derivation uses distribution over A059896(.,.) and A059897(.,.) respectively. - Peter Munn, Mar 25 2020
From Peter Munn, Jun 16 2021: (Start)
The operation defined by this sequence can be extended to be the multiplicative operator of a ring over the positive rationals that is isomorphic to the polynomial ring Z[x]. The extended function f (described in the author's original comments) is the isomorphism we use, and it has the same relationship with the extended operation that exists between their unextended equivalents.
Denoting this extension of T(.,.) as t_Q(.,.), we get t_Q(n, 1/k) = t_Q(1/n, k) = 1/T(n, k) and t_Q(1/n, 1/k) = T(n, k) for positive integers n and k. The result for other rationals is derived from the distributive property: t_Q(q, r*s) = t_Q(q, r) * t_Q(q, s); t_Q(q*r, s) = t_Q(q, s) * t_Q(r, s). This may look unusual because standard multiplication of rational numbers takes on the role of the ring's additive group.
There are many OEIS sequences that can be shown to be a list of the integers in an ideal of this ring. See the cross-references.
There are some completely additive sequences that similarly define by extension completely additive functions on the positive rationals that can be shown to be homomorphisms from this ring onto the integer ring Z, and these functions relate to some of the ideals. For example, the extended function of A048675, denoted A048675_Q, maps i/j to A048675(i) - A048675(j) for positive integers i and j. For any positive integer k, the set {r rational > 0 : k divides A048675_Q(r)} forms an ideal of the ring; for k=2 and k=3 the integers in this ideal are listed in A003159 and A332820 respectively.
(End)

Examples

			Array T(n, k) begins:
  n\k|  1   2   3    4    5    6    7     8    9    10
  ---+------------------------------------------------
    1|  1   1   1    1    1    1    1     1    1     1  -> A000012
    2|  1   2   3    4    5    6    7     8    9    10  -> A000027
    3|  1   3   5    9    7   15   11    27   25    21  -> A003961
    4|  1   4   9   16   25   36   49    64   81   100  -> A000290
    5|  1   5   7   25   11   35   13   125   49    55  -> A357852
    6|  1   6  15   36   35   90   77   216  225   210  -> A191002
    7|  1   7  11   49   13   77   17   343  121    91
    8|  1   8  27   64  125  216  343   512  729  1000  -> A000578
    9|  1   9  25   81   49  225  121   729  625   441
   10|  1  10  21  100   55  210   91  1000  441   550
From _Peter Munn_, Jun 24 2021: (Start)
The encoding, n, of polynomials, f(n), that is used for the table is further described in A206284. Examples of encoded polynomials:
   n      f(n)        n           f(n)
   1         0       16              4
   2         1       17            x^6
   3         x       21        x^3 + x
   4         2       25           2x^2
   5       x^2       27             3x
   6     x + 1       35      x^3 + x^2
   7       x^3       36         2x + 2
   8         3       49           2x^3
   9        2x       55      x^4 + x^2
  10   x^2 + 1       64              6
  11       x^4       77      x^4 + x^3
  12     x + 2       81             4x
  13       x^5       90   x^2 + 2x + 1
  15   x^2 + x       91      x^5 + x^3
(End)
		

Crossrefs

Row n: n=1: A000012, n=2: A000027, n=3: A003961, n=4: A000290, n=5: A357852, n=6: A191002, n=8: A000578.
Main diagonal: A297473.
Functions f satisfying f(T(n,k)) = f(n) * f(k): A001222, A048675 (and similarly, other rows of A104244), A195017.
Powers of k: k=3: A000040, k=4: A001146, k=5: A031368, k=6: A007188 (see also A066117), k=7: A031377, k=8: A023365, k=9: main diagonal of A329050.
Integers in the ideal of the related ring (see Jun 2021 comment) generated by S: S={3}: A005408, S={4}: A000290\{0}, S={4,3}: A003159, S={5}: A007310, S={5,4}: A339690, S={6}: A325698, S={6,4}: A028260, S={7}: A007775, S={8}: A000578\{0}, S={8,3}: A191257, S={8,6}: A332820, S={9}: A016754, S={10,4}: A340784, S={11}: A008364, S={12,8}: A145784, S={13}: A008365, S={15,4}: A345452, S={15,9}: A046337, S={16}: A000583\{0}, S={17}: A008366.
Equivalent sequence for polynomial composition: A326376.
Related binary operations: A003991, A306697/A059896, A329329/A059897.

Programs

  • PARI
    T(n,k) = my (f=factor(n), p=apply(primepi, f[, 1]~), g=factor(k), q=apply(primepi, g[, 1]~)); prod (i=1, #p, prod(j=1, #q, prime(p[i]+q[j]-1)^(f[i, 2]*g[j, 2])))

Formula

T is completely multiplicative in both parameters:
- for any n > 0
- and k > 0 with prime factorization Prod_{i > 0} prime(i)^e_i:
- T(prime(n), k) = T(k, prime(n)) = Prod_{i > 0} prime(n + i - 1)^e_i.
For any m > 0, n > 0 and k > 0:
- T(n, k) = T(k, n) (T is commutative),
- T(m, T(n, k)) = T(T(m, n), k) (T is associative),
- T(n, 1) = 1 (1 is an absorbing element for T),
- T(n, 2) = n (2 is an identity element for T),
- T(n, 2^i) = n^i for any i >= 0,
- T(n, 4) = n^2 (A000290),
- T(n, 8) = n^3 (A000578),
- T(n, 3) = A003961(n),
- T(n, 3^i) = A003961(n)^i for any i >= 0,
- T(n, 6) = A191002(n),
- A001221(T(n, k)) <= A001221(n) * A001221(k),
- A001222(T(n, k)) = A001222(n) * A001222(k),
- A055396(T(n, k)) = A055396(n) + A055396(k) - 1 when n > 1 and k > 1,
- A061395(T(n, k)) = A061395(n) + A061395(k) - 1 when n > 1 and k > 1,
- T(A000040(n), A000040(k)) = A000040(n + k - 1),
- T(A000040(n)^i, A000040(k)^j) = A000040(n + k - 1)^(i * j) for any i >= 0 and j >= 0.
From Peter Munn, Mar 13 2020 and Apr 20 2021: (Start)
T(A329050(i_1, j_1), A329050(i_2, j_2)) = A329050(i_1+i_2, j_1+j_2).
T(n, m*k) = T(n, m) * T(n, k); T(n*m, k) = T(n, k) * T(m, k) (T distributes over multiplication).
A104244(m, T(n, k)) = A104244(m, n) * A104244(m, k).
For example, for m = 2, the above formula is equivalent to A048675(T(n, k)) = A048675(n) * A048675(k).
A195017(T(n, k)) = A195017(n) * A195017(k).
A248663(T(n, k)) = A048720(A248663(n), A248663(k)).
T(n, k) = A306697(n, k) if and only if T(n, k) = A329329(n, k).
A007913(T(n, k)) = A007913(T(A007913(n), A007913(k))) = A007913(A329329(n, k)).
(End)

Extensions

New name from Peter Munn, Jul 17 2021

A341446 Heinz numbers of integer partitions whose only odd part is the smallest.

Original entry on oeis.org

2, 5, 6, 11, 14, 17, 18, 23, 26, 31, 35, 38, 41, 42, 47, 54, 58, 59, 65, 67, 73, 74, 78, 83, 86, 95, 97, 98, 103, 106, 109, 114, 122, 126, 127, 137, 142, 143, 145, 149, 157, 158, 162, 167, 174, 178, 179, 182, 185, 191, 197, 202, 209, 211, 214, 215, 222, 226
Offset: 1

Views

Author

Gus Wiseman, Feb 12 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers whose only odd prime index (counting multiplicity) is the smallest.

Examples

			The sequence of partitions together with their Heinz numbers begins:
      2: (1)         54: (2,2,2,1)    109: (29)
      5: (3)         58: (10,1)       114: (8,2,1)
      6: (2,1)       59: (17)         122: (18,1)
     11: (5)         65: (6,3)        126: (4,2,2,1)
     14: (4,1)       67: (19)         127: (31)
     17: (7)         73: (21)         137: (33)
     18: (2,2,1)     74: (12,1)       142: (20,1)
     23: (9)         78: (6,2,1)      143: (6,5)
     26: (6,1)       83: (23)         145: (10,3)
     31: (11)        86: (14,1)       149: (35)
     35: (4,3)       95: (8,3)        157: (37)
     38: (8,1)       97: (25)         158: (22,1)
     41: (13)        98: (4,4,1)      162: (2,2,2,2,1)
     42: (4,2,1)    103: (27)         167: (39)
     47: (15)       106: (16,1)       174: (10,2,1)
		

Crossrefs

These partitions are counted by A035363 (shifted left once).
Terms of A340932 can be factored into elements of this sequence.
The even version is A341447.
A001222 counts prime factors.
A005408 lists odd numbers.
A026804 counts partitions whose smallest part is odd.
A027193 counts odd-length partitions, ranked by A026424.
A031368 lists odd-indexed primes.
A032742 selects largest proper divisor.
A055396 selects smallest prime index.
A056239 adds up prime indices.
A058695 counts partitions of odd numbers, ranked by A300063.
A061395 selects largest prime index.
A066207 lists numbers with all even prime indices.
A066208 lists numbers with all odd prime indices.
A112798 lists the prime indices of each positive integer.
A244991 lists numbers whose greatest prime index is odd.
A340932 lists numbers whose smallest prime index is odd.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,100],OddQ[First[primeMS[#]]]&&And@@EvenQ[Rest[primeMS[#]]]&]

Formula

Also numbers n > 1 such that A055396(n) is odd and A032742(n) belongs to A066207.

A340932 Numbers whose least prime index is odd. Heinz numbers of integer partitions whose last part is odd.

Original entry on oeis.org

2, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23, 24, 25, 26, 28, 30, 31, 32, 34, 35, 36, 38, 40, 41, 42, 44, 46, 47, 48, 50, 52, 54, 55, 56, 58, 59, 60, 62, 64, 65, 66, 67, 68, 70, 72, 73, 74, 76, 78, 80, 82, 83, 84, 85, 86, 88, 90, 92, 94, 95, 96, 97
Offset: 1

Views

Author

Gus Wiseman, Feb 12 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. 1 has no prime indices so is not included.

Examples

			The sequence of terms together with their prime indices begins:
      2: {1}           24: {1,1,1,2}       46: {1,9}
      4: {1,1}         25: {3,3}           47: {15}
      5: {3}           26: {1,6}           48: {1,1,1,1,2}
      6: {1,2}         28: {1,1,4}         50: {1,3,3}
      8: {1,1,1}       30: {1,2,3}         52: {1,1,6}
     10: {1,3}         31: {11}            54: {1,2,2,2}
     11: {5}           32: {1,1,1,1,1}     55: {3,5}
     12: {1,1,2}       34: {1,7}           56: {1,1,1,4}
     14: {1,4}         35: {3,4}           58: {1,10}
     16: {1,1,1,1}     36: {1,1,2,2}       59: {17}
     17: {7}           38: {1,8}           60: {1,1,2,3}
     18: {1,2,2}       40: {1,1,1,3}       62: {1,11}
     20: {1,1,3}       41: {13}            64: {1,1,1,1,1,1}
     22: {1,5}         42: {1,2,4}         65: {3,6}
     23: {9}           44: {1,1,5}         66: {1,2,5}
		

Crossrefs

These partitions are counted by A026804.
The case where all prime indices are odd is A066208.
Looking at greatest prime index instead of least gives A244991.
Every term x is a product of A257991(x) elements of A341446.
The complement is {1} \/ A340933, counted by A026805.
A001222 counts prime factors.
A005408 lists odd numbers.
A027193 counts odd-length partitions, ranked by A026424.
A031368 lists odd-indexed primes.
A055396 selects least prime index.
A056239 adds up prime indices.
A058695 counts partitions of odd numbers, ranked by A300063.
A061395 selects greatest prime index.
A112798 lists the prime indices of each positive integer.

Programs

  • Mathematica
    Select[Range[100],OddQ[PrimePi[FactorInteger[#][[1,1]]]]&]

Formula

A055396(a(n)) belongs to A005408.
Closed under multiplication.

A349158 Heinz numbers of integer partitions with exactly one odd part.

Original entry on oeis.org

2, 5, 6, 11, 14, 15, 17, 18, 23, 26, 31, 33, 35, 38, 41, 42, 45, 47, 51, 54, 58, 59, 65, 67, 69, 73, 74, 77, 78, 83, 86, 93, 95, 97, 98, 99, 103, 105, 106, 109, 114, 119, 122, 123, 126, 127, 135, 137, 141, 142, 143, 145, 149, 153, 157, 158, 161, 162, 167, 174
Offset: 1

Views

Author

Gus Wiseman, Nov 12 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers with exactly one odd prime index. These are also partitions whose conjugate partition has alternating sum equal to 1.
Numbers that are product of a term of A031368 and a term of A066207. - Antti Karttunen, Nov 13 2021

Examples

			The terms and corresponding partitions begin:
      2: (1)         42: (4,2,1)       86: (14,1)
      5: (3)         45: (3,2,2)       93: (11,2)
      6: (2,1)       47: (15)          95: (8,3)
     11: (5)         51: (7,2)         97: (25)
     14: (4,1)       54: (2,2,2,1)     98: (4,4,1)
     15: (3,2)       58: (10,1)        99: (5,2,2)
     17: (7)         59: (17)         103: (27)
     18: (2,2,1)     65: (6,3)        105: (4,3,2)
     23: (9)         67: (19)         106: (16,1)
     26: (6,1)       69: (9,2)        109: (29)
     31: (11)        73: (21)         114: (8,2,1)
     33: (5,2)       74: (12,1)       119: (7,4)
     35: (4,3)       77: (5,4)        122: (18,1)
     38: (8,1)       78: (6,2,1)      123: (13,2)
     41: (13)        83: (23)         126: (4,2,2,1)
		

Crossrefs

These partitions are counted by A000070 up to 0's.
Allowing no odd parts gives A066207, counted by A000041 up to 0's.
Requiring all odd parts gives A066208, counted by A000009.
These are the positions of 1's in A257991.
The even prime indices are counted by A257992.
The conjugate partitions are ranked by A345958.
Allowing at most one odd part gives A349150, counted by A100824.
A047993 ranks balanced partitions, counted by A106529.
A056239 adds up prime indices, row sums of A112798.
A122111 is a representation of partition conjugation.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A325698 ranks partitions with as many even as odd parts, counted by A045931.
A340604 ranks partitions of odd positive rank, counted by A101707.
A340932 ranks partitions whose least part is odd, counted by A026804.
A349157 ranks partitions with as many even parts as odd conjugate parts.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[primeMS[#],_?OddQ]==1&]
Showing 1-10 of 53 results. Next