A033487 a(n) = n*(n+1)*(n+2)*(n+3)/4.
0, 6, 30, 90, 210, 420, 756, 1260, 1980, 2970, 4290, 6006, 8190, 10920, 14280, 18360, 23256, 29070, 35910, 43890, 53130, 63756, 75900, 89700, 105300, 122850, 142506, 164430, 188790, 215760, 245520, 278256, 314160, 353430, 396270, 442890, 493506, 548340, 607620
Offset: 0
Examples
G.f. = 6*x + 30*x^2 + 90*x^3 + 210*x^4 + 420*x^5 + 756*x^6 + 1260*x^7 + ...
References
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..690
- Steve Butler and Pavel Karasik, A note on nested sums, J. Int. Seq., Vol. 13 (2010), Article 10.4.4.
- Ömür Deveci and Anthony G. Shannon, Some aspects of Neyman triangles and Delannoy arrays, Mathematica Montisnigri (2021) Vol. L, 36-43.
- Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 9.
- Aleksandar Petojević and Nenad Đapić, The vAm(a,b,c;z) function, Preprint 2013.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- Hasan Unal, Proof Without Words: Sums of Products of Three Consecutive Integers, Mathematics Magazine, Vol. 88, No. 1 (February 2015), pp. 37-38.
- Eric Weisstein's World of Mathematics, Cocktail Party Graph.
- Eric Weisstein's World of Mathematics, Connected Dominating Set.
- Eric Weisstein's World of Mathematics, Crown Party Graph.
- Eric Weisstein's World of Mathematics, Graph Crossing Number.
- Index entries for sequences related to Bessel functions or polynomials
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Magma
[n*(n+1)*(n+2)*(n+3)/4: n in [0..40]]; // Vincenzo Librandi, Apr 28 2011
-
Maple
[seq(binomial(n+3,4)*6, n=0..40)]; # Zerinvary Lajos, Jul 18 2006
-
Mathematica
Table[Times @@ (n + Range[0, 3])/4, {n, 0, 40}] (* Harvey P. Dale, Nov 27 2013 *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 6, 30, 90, 210}, 40] (* Harvey P. Dale, Nov 27 2013 *) Table[6 Binomial[n+3, 4], {n,0,40}] (* Eric W. Weisstein, Jun 29 2017 *) Times @@@ Table[n+k, {n, 0, 40}, {k, 0, 3}]/4 (* Eric W. Weisstein, Apr 29 2019 *)
-
PARI
a(n)=6*binomial(n+3,4) \\ Charles R Greathouse IV, Apr 17 2012
-
PARI
concat(0, Vec(6*x/(1-x)^5 + O(x^100))) \\ Altug Alkan, Nov 29 2015
-
SageMath
def A033487(n): return 6*binomial(n+3,4) print([A033487(n) for n in range(41)]) # G. C. Greubel, Feb 08 2025
Formula
From Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 10 2001: (Start)
G.f.: 6*x/(1-x)^5.
a(n) = 6*binomial(n+3, 4) = 6*A000332(n+3).
a(n) = a(n-1) + A007531(n+1).
a(n) = Sum_{i=0..n} i*(i+1)*(i+2). (End)
Constant term in Bessel polynomial {y_n(x)}''.
a(n) = binomial(n+2,2)^2 - binomial(n+2,2). - Zerinvary Lajos, May 17 2006
From Zerinvary Lajos, May 11 2007: (Start)
a(n-1) = Sum_{j=1..n} Sum_{i=2..n} i*j.
a(n) = Sum_{j=1..n} j*(n+2)*(n-1)/2. (End)
Sum_{n>0} 1/a(n) = 2/9. - Enrique Pérez Herrero, Nov 10 2013
a(-3-n) = a(n) = 2 * binomial(binomial(n+2, 2), 2). - Michael Somos, Apr 06 2014
a(n) = A002378(binomial(n+2,2)-1). - Salvador Cerdá, Nov 04 2016
a(n) = Sum_{k=0..n} A007531(k+2). See Proof Without Words link. - Michel Marcus, Oct 29 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = 16*log(2)/3 - 32/9. - Amiram Eldar, Nov 02 2021
E.g.f.: exp(x)*x*(24 + 36*x + 12*x^2 + x^3)/4. - Stefano Spezia, Jul 03 2025
Comments